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Outline

Outline of unit 3
Introduction (this mini-lecture)

m Recursive methods in quantitative macroeconomics
m Infinite-horizon vs. life-cycle solution methods

Value function iteration (VFI)
Endogenous grid-point method (EGM)
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Recursive formulation of household problem

Recall that we can write a household problem in two ways:

Sequential formulation

|

V(ag, yo) = { max E

c,};‘;o,{anl};’io

i ﬁt“(ct)

st. a+ap=0+ra+y Vit
20, a14,120 Vit

Recursive formulation

v]]

V(a,y) = max {u(c) + pE [V(a', y')

st. c+d' =(1+r)a+y
c>0,ad >0
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Recursive methods

m The sequential formulation is quite useless for solving heterogeneous-agent models
numerically

= We exclusively deal with recursive formulation

m We want to find functions that characterise the solution:

The value function V(a, y)
The policy functions

¢ =C(a,y) Optimal consumption
a’ = A(a,y) Optional savings

These functions are defined on discretised grids a € G, and y € G,
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Iteration and backwards induction

Two main types of household problems:

Infinite-horizon problems
m Need to start with a guess for the solution; often this is just Vy(a,y) = 0
m Iterate on some object until consecutive iterations V,,, V,,4; are sufficiently close

m We can iterate either on value functions (VFI) or policy functions (PFl, EGM:
endogenous grid-point method)

Finite-horizon problems
m Life-cycle and OLG models
m Solve for last period T

m Use backward induction to solve previous periods T —1,T —2,...
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Infinite horizon vs. life-cycle

Infinite horizon: iteration
1 2 3 4 5 [|Va=Vihoill<e

Life-cycle: backward induction

T T-1 T-2 T-3 T-4 1

Figure 1: Solving infinite-horizon vs. life-cycle models

5/7



Overview of unit 3

Outline of remaining mini-lectures
m We exclusively solve household problems
m Ignore distribution of households
m Ignore general equilibrium
Next mini-lectures:
Lecture 1: Value function iteration (VFI)
m Grid search
m Interpolation
Lecture 2: Endogenous grid-point method (EGM)

Slides and pre-recorded lectures: general concepts, algorithms, results
m Live sessions: implement examples discussed in slides

m Hands-on approach to complement units 1-2
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Overview of unit 3

Source code
m Github repository: https://github.com/richardfoltyn/mres-macro-topics
m Python and Matlab source code for examples discussed in lectures / live sessions

m We use Matlab in live sessions
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Topics covered in this unit

Solving household problems with VFI

We discuss the following models:
No uncertainty, no labour income: analytical solution
Certain labour income
Risky labour income

In all cases we assume CRRA preferences!

Solution methods

Grid search: no interpolation
“Unrestricted” maximisation:

Linear interpolation
Spline interpolation
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Contents

VFI with analytical solution (no income)
VFI with grid search (constant income)

VFI with interpolation (risky income)

Appendix: Approximating AR(1) processes with Markov chains
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VFI with analytical solution



Analytical solution

m Under some conditions value function has closed-form solution
m Assumptions:

CRRA preferences
No labour income
No uncertainty

m Solution methods:

Iteration on value function (“manual” VFI)
Guess and verify (not covered)

lllustration: manually iterate on closed form, compare with numerical solution.
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Household problem
Analytical VFI

Consider infinite-horizon consumption-savings problem with log preferences:

V(a) =max {log(c) +ﬁV(a’)}

st. c+a =(1+r)a
c>0,ad >0

where

a Beginning-of-period assets
a’ Next-period assets (savings)
r Constant interest rate

J Discount factor § € (0,1)
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Solving the household problem
Analytical VFI

How can we find V using VFI?
m Initial guess:

m Consume everything: ¢ = (1+7r)a
m Continuation value is zero

m Value function in iteration 1:
Vi(a) = log(c) = log((1+r)a) = log(1 +7) +log(a)
m HH problem in iteration 2:
V(a) = max {1og(c) + ﬁvl(a')}

= max {log(C) + ﬁ[log(l +7)+ Iog(a')”

st. c+ad =(1+r)a
c>0,da >0
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Solving the household problem
Analytical VFI

Iteration 2

m First-order conditions:
cl=2 B(a) =2

where A is Lagrange multiplier on budget constraint.
m Eliminate Lagrange multiplier: a’ = fic
m Substitute for @’ in budget constraint to find policy functions:

c+Pfc=(1+r)a = c=1+p) (1+r)a
= d =p1+p) '(1+r)a

m Plug policy functions into value function:

Va(@ =log ((1+ )" (1+r)a) + B[log(1+ 1) +log((1+ /)~ (1+1)a) |
= flog - (1+ B)log(1+f) + (1+2pB)log(1+7)+ (1+ p)log(a)
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Solving the household problem
Analytical VFI

After 2 iterations we have:

Vi(a) =log(1+r)+ 1 xlog(a)
—_—— ——

X1 P1
Va(a) = Blog f— (1+ B)log(1+ f) + (1 +26) log(1+r)+(1+ p)log(a)
N———
X2 P2

m Continue iterating? — Expressions become too complicated!

m Instead conjecture that value function takes the form

Va(a) = Xnt @n 10g(a)

We have shown this to be true forn =1, 2

(M

7/35



Solving via induction
Analytical VFI

Assume V has functional form given in (1) for some n

m Then V,4; will be given by

Vn+1(a) = Xn+1 T Qn+1 10g(a)

Task: find yu+1, @n+1 given xn, on
m We do this by solving

Vue1(a) = max {log(c) + ﬁVn(a')}

= rg%;{ {log(c) + ﬁ[){n + ¢n IOg(a/)] }

st. c+a' =(1+r)a
c>0,a >0
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Solving via induction
Analytical VFI

Iteration n + 1

m First-order conditions for the (n + 1)-th iteration:
cl=2 Bon () =2

m Substitute for @’ in budget constraint to find policy functions:

c+Ponc=(1+r)a = c=1+Pp,) "(1+r)a (2)
= a’:%(l+r)a (3)

m Plug policy functions into value function:

Vit (@) = 1og((1 + Bo) "' (14 )a) + B

Xn + ¢nlog (%(1 + r)a)]
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Solution for V
Analytical VFI

m Collect terms:

Vii1(a) = Byn + Ponlog(Ben) — (1+ Pon) [log(1+ Bep) +1og(1+7)

Xn+1

+ (1 + Bon) log(a)
[
¢n+1

m Pin down sequence of (¢,),;:
m Follows first-order linear difference equation

Ony1 =1+ ﬁ(Pn

m General solution (¢o pinned down by ¢; = 1):

q’n:ﬂn((PO_liﬂ)‘F !

m Convergence to limit:

:1 n=——
=T 18
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Solution for V
Analytical VFI

m Difference equation for y, is much more complicated (depends on ¢,!)

m Compute only limiting value (move Sy, to l.h.s.):
nlgrolo Xn+1 — ,B)(n =
lim S, log(fen) = (1+ on) |log(1+ Pen) +log(1+7)

m Limiting value given by:

1
1-p

x = lim y, = b log f+log(1 - p) + log(1+7)

1-p
m Converged value function V:

1
log(a
y: g(a)

V(a) = y+ n
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Value function convergence
Analytical VFI

Convergence of coefficients y, and ¢, in

Va(a) = xn + @nlog(a)

0 - — x| 251
_10.
20 20
_30.
15
—40 -
—50 10
_60.
—-70 1 37
—80 4 on
r r r 0+ r r
100 10t 102 10° 10t 102

Log iteration

Log iteration

Figure 1: Convergence of analytical value function coefficients.
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Analytical vs. numerical iteration

Analytical VFI

Value function

Numerical ——- Analytical
I —1
~ P
- - = - 10
/./ ’_’.f" 15
—-].0 7 /'/ ,-—"—"‘ i -
/ -/"./ _ ’l’.f
/ ” - - - /"'- 20
I 7 " -
! 7 o e - 25
204 - - ~
7 - e 30
/ 7 - /‘/ _/'/‘ /""
/ 4 /‘/' - - _~ -
// / _ - -
7 . ~
- 4 / / rd o~
309 ¢ / / s -
! / 7/ e e
! / /'/ /'/ e
I/ / e
I 7 v £
—-40 T T T T T
1 2 3 4 5
Assets

Figure 2: Value function V;, for the first few iterations.
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Policy function convergence
Analytical VFI

Apply same reasoning to policy functions

m Define MPC as x, = (1+ Bo,) ™!

m Rewrite policy functions (2) and (3) at
iteration n + 1 as:

Cne1 = Kp(1+7)a

Ape = (1= Kn)(1+7)a

m lim, 0k, =1-f
m Policy functions usually converge
faster than value functions!

0.5 4
0.4 4
0.3 4
0.2 4

0.1 1

Figure 3: Convergence of policy function coefficient.

Kn

10°

10!
Log iteration

102

14/35



Analytical vs. numerical solution

Analytical VFI
Value func. V Savings a’ Consumption ¢
-50 1 37 0.201
—100 - ad
—150 4 0.15 1
—200 4 31
—250 0.10 4
2 .
—300
—350 14 0.05 A
—400 - —_— Zun;erlicall
—— Analytica i i
_450 L T T T T T 0 T T T T T T 0.00 T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Assets Assets Assets

Figure 4: Converged value and policy functions.
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VFI with grid search



VFI with grid search

Restriction: solution method forces next-period assets to be exactly on discretized
grid: @’ € G,
m Advantages:
Easy to implement
Derivative-free method
Fast (unless grid is very dense)
m Disadvantages:

Imprecise
Policy functions are not smooth (unless grid is very dense)

Does not scale well to multiple dimensions
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Example: HH problem with constant labour income
VFI with grid search

m Infinitely-lived HH solves consumption-savings problem

V(a) = _max {u(c) +pv(d )}

st. c+d' =(1+r)a+y

c>0,a >0

where

G, Beginning-of-period asset grid
y Constant labour income

m Preferences are assumed to be CRRA with relative risk aversion y:

1 Yy _ 1
u(c) = —
Y

m Note that with y = 1, u(c) = log(c) as before
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Solution algorithm
VFI with grid search

Create asset grid G, = (ay,...,an,)
Pick initial guess for value function, V,

In iteration n, perform the following steps

For each asset level a;, find all feasible next-period asset levels a; < (1+r)a; + v,
a; € ga
For each j, compute consumptionc; = (1+r)a; +y —a;
For each j, compute utility
Uj = u(cj) + BVu(ay) (4)

A Find the index k that maximises (4):

k =arg max{u(cj) + ﬂVn(aj)}
J

Set Vy+1(a;) = Uk and store k as the optimal choice at a;
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Parametrisation for problem with constant l[abour income
VFI with grid search

m The next slides show solutions for the following parametrisation:

Description Value
B Discount factor 0.96
o Coef. of relative risk aversion 2
r Interest rate 0.04
y Labour income 1
Ng  Asset grid size 50, 100, 1000

Table 1: Parameters for HH problem with constant labour income

m Each graph compares three solution methods:
VFI with grid search
VFI with linear interpolation
VFI with cubic spline interpolation
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Solution for N, = 50
VFI with grid search

Grid search is quite sensitive to grid size!

Compare results for N, = 50, N, = 100 and N, = 1000.

Value func. V Savings a’ Consumption ¢
6 7 1.30
—— Grid search
54 —=- Linear 6 1 1.25 A
-------- Cubic
5
4 A 1.20 A
4 -
37 1.15 1
3 B
24 1.10 A
2 B
1A 14 1.05 A
0 0 1.00 1
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Assets Assets Assets

Figure 5: Solution with 50 asset grid points.
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Solution for N, = 100
VFI with grid search

Value func. V Savings a’ Consumption ¢
5 6 1.30
—— Grid search
——- Linear e
4l Li 1.25
1.20 A
1.15 A
1.10 1
1.05 A
1.00 A
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Assets Assets Assets

Figure 6: Solution with 100 assets grid points.
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Solution for N, = 1000
VFI with grid search

Value func. V Savings a’ Consumption ¢
5 6 1.30
—— Grid search
——- Linear e
4l Li 1.25
1.20 A
1.15 A
1.10 A
1.05 A
1.00 A
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Assets Assets Assets

Figure 7: Solution with 1000 assets grid points.
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VFI with interpolation

Grid search is rarely used today

We prefer solution algorithms which find local maximum for each point on the grid
(i.e. solution satisfies first-order conditions)

Optimal points need not be on the grid, hence we have to interpolate

Advantages:
“Exact” solution (in a numerical sense)
Less affected by curse of dimensionality in case of multiple choice variables
Easier to spot mistakes since policy functions don’t have artificial kinks as in grid
search

Disadvantages:

Likely slower than grid search
More complex to implement:
m Need maximisation or root-finding routine
m Need to compute derivatives of objective function or first-order condition, unless we use
derivative-free methods or numerical differentiation.
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Example: HH problem with risky labour income
VFI with interpolation

m lllustrate VFI with interpolation using standard Bewley/Huggett/Aiyagari problem
with risky labour income

m Infinite-lived HH solves consumption-savings problem

v]]

V(a,y) =max {u(e) + BE | V(a'.¥)

st. c+ad' =(1+r)a+y
c>0,ad >0

where
y Labour income process on state space G, with transition probability
Pr(y =y;ly=yi)=m;
m As before, u(e) is CRRA

m Note that now we have a two-dimensional state space on G, X G.
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Solution algorithm
VFI with interpolation

Create asset grid G, = (ay,...,an,)

Create discrete labour income process with states G, = (y1, ..., yn,) and transition
matrix IT,

Pick initial guess for value function, Vj

In iteration n, perform the following steps
For each point (a;, y;) in the state space, find

PJy
a* =argmaxiu(x; —d')+ Z Tk Vo (@', yk)
k=1

a’€[0,x;5]

where x;; = (1+r)a; +y; is the cash at hand.
Compute value at optimum,

V* = u(xy - a*) + BE | Vi (a*y)

]

Set Vi1 (ai, yj) = V* and store Any(a;, yj) = a* as the savings policy function.
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Solution algorithm
VFI with interpolation

How do we find a*?

We use a maximiser that finds the maximum a* € [0, x;j] of the function

IJy
f(a lany;) =u(x;—a) +ﬁz TV (@', yr)
=1

for given (a;,y;).
m Need to interpolate V; (e, yi) onto arbitrary a’
m Need to either use derivative-free maximizer, or differentiate df /da’ numerically

In principle, we could perform root-finding on the FOC

pr
—u' (x;;—a') + /)’Z 7ikdVy (a',yk) /da’ =0
k=1

This is rarely done since we don’t know dV}, (d’, yx) /da’ and fast root-finders
additionally need the derivative of the FOC!
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Parametrisation for problem with risky labour
VFI with interpolation

m Assume labour process follows AR(1),

iid
Yr+1 = PYr + €41 a1 ~ N (O, 0'2)

which we discretise as a Markov chain using the Rouwenhorst (1995) or Tauchen
(1986) methods.

m The next slides show solutions for the following parametrisation:

Description Value
p Discount factor 0.96
o Coef. of relative risk aversion 2
r Interest rate 0.04
P Autocorrelation of AR(1) process 0.95
o Conditional std. dev. of AR(1) process 0.20
Ny Number of states for Markov chain 3
N,  Asset grid size 50, 100, 1000

Table 2: Parameters for HH problem with risky labour income
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Solution for N, = 50

VFI with interpolation

Solution for different income levels: low, middle, high

Value func. V Savings a’ Consumption ¢

-10
—15-

—20 4 ar
B —— Grid search
=25 .27 R

Z ---- Linear

Assets Assets Assets

Figure 8: Solution with 50 asset grid points.

28/35



Solution for N, = 100

VFI with interpolation

Solution for different income levels: low, middle, high

Value func. V Savings a’ Consumption ¢
— 7
| ST s S 1.4 1
5 6 N
0- L I
5 1.24
51 S
4+ 1.0 -
~10 /”(,«f‘ /‘__“‘,/""
I 31 0.8
—15 i Y o L B
201 //_' 0.6 p —7/‘7,.—— \
P —— Grid search 1y T
—25 17 ---- Linear / 0.4 4/,
0 EA-
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Assets Assets Assets

Figure 9: Solution with 100 assets grid points.
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Solution for N, = 1000

VFI with interpolation

Solution for different income levels: low, middle, high

Value func. V Savings a’ Consumption ¢
— 6
5" ] 144 o —
5 A P
o1 7 124 oL
sl 44 /// ,:',"
2L Y/ 4 1.0 :
~10 - | 3 1 el /‘,’/ I ==
o~ iy /4 R g
— /4 0.8 - g
-151 21 S y
P o 7 ==
~ /4 0.6 e
=201 pd ) 147 —
J/ —— Grid search /4 -
—251/ ---- Linear 7 041
0+
0 1 2 3 4 5 0 1 2 3 4 0 1 2 3 4 5
Assets Assets Assets

Figure 10: Solution with 1000 assets grid points.
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Main take-aways

m Avoid grid search if you can!
m Test sensitivity of your solution to chosen grid size:

m Check policy functions, value function almost always looks smooth!
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Appendix:
Approximating AR(1) processes with Markov chains



AR(1) processes

Consider the following AR(1) process:
Xr41 = [+ PXp + €141 €r+1 < N (0, O'g)

This process has the following conditional and unconditional moments:

‘ Conditional ‘ Unconditional
Mean B lxeet [30] = o+ pxe Blx] =i
2
Variance Var ( xz41 | x4) = Var (€441) = ag Var (x;) = :ﬁ
Autocorrelation - Corr (x41, %) = p

Unconditional moments:
m Reflect long-run behaviour of a single process
m With a large cross-section of individuals, they also represent the cross-sectional

mean and variance of the stationary distribution
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Approximating AR(1) processes

m Any Markov chain approximation of an AR(1) needs to provide:
The discrete state space x = (x1, Xz, ..., XN)
The transition matrix IT where the element (i, j) is the probability
Pr(Xt+1 =xj|x = xi)
Using these, we can find the ergodic (invariant, stationary) distribution A over
states x which satisfies

A =2T1
m Approximation should match conditional / unconditional moments reasonably well!

m Frequently-used methods:

Tauchen (1986)
Rouwenhorst (1995): much better for processes with high persistence
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Example: Income process

Assume that log income follows an AR(1) process:
log ys41 = plogy; + €141 €r+1 N (0, 03)
with g = 0 (omitted), p = 0.95, o2 = (0.2)?

Discretized Markov chain (Rouwenhorst method)
m State space in logs, transition matrix and ergodic distribution:

—0.9058 0.9506 0.0488 0.0006 0.25
logy = 0 IT =(0.0244 0.9512 0.0244 A =050
0.9058 0.0006 0.0488 0.9506 0.25

m State space in levels:

0.4042
y = [1.0000
2.4740

m Unconditional average income: Ey; = A’y = 1.2195
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Motivation

Solving HH problems is often slow — Why?
m Consider standard infinite-horizon consumption-savings problem with states (a, y):
a Beginning-of-period assets
y Risky labour income following first-order Markov chain

m At each point (a;, y;) we maximise the objective

f(@) =ux;—a)+ BBV (@) |y

where x;; is the cash at hand.
m Any numerical maximiser will call f(e) repeatedly to
Determine the objective’s value at some candidate point
Determine the derivative at some candidate point
Numerically differentiate the objective function
m This quickly adds up to numerous calls, which can be computationally expensive,
depending on how difficult it is to compute expectations, etc.
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Endogenous grid-point method

m The insight behind EGM (due to Carroll, 2006): Compute expectation only once!
m How can we do that if we don’t know the optimal solution?

m Exogenously impose the optimal solution (in the above case: a’)
m Determine implied beginning-of-period assets a
m This gives rise to endogenous grid of beginning-of-period asset levels!
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Endogenous grid-point method

Advantages
m Considerably faster than any other known method in this class of models
m No need for a maximiser or root-finder

m Works very well with linear interpolation, no need for splines, etc.

Disadvantages
m Does not always work
m Does not scale well to multiple continuous state or control variables (see Druedahl
and Jergensen (2017) for one attempted solution)

m Tricky (but possible) to combine with discrete choices, e.g. due to extensive-margin
labour supply, fixed costs (see Iskhakov et al. (2017), Fella (2014))
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Example: HH problem with risky labour

m Consider infinite-horizon consumption-savings problem

v]]

V(a,y) =max {u(c) + SE [V(a’,y’)

st. c+d' =(1+r)a+y

c>0,a >0

where
y Labour income process on state space G, with transition probability
Pr(y =y;ly=y)=m;

m Preferences are CRRA:
|

1-y

u(c) =
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[llustration of “standard” approach

Consumption ¢

Savings a’

Mapping: solve max. problem at a

Mapping: solve max. problem at a

0 a
Assets

a
Assets

Figure 1: Mapping from exogenous assets to consumption and savings.
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[[lustration of EGM approach

Consumption ¢ Beginning-of-period assets a
Mapping: Euler eq. Mapping: Euler eq. 4+ budget constr.
C*(a/) < A*((L/)‘
a-
0 a’ 0 a’
Exogenous savings Exogenous savings

Figure 2: Mapping from exogenous savings to consumption and assets.
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Deriving the Euler equation

m Combining the FOCs for c and a’ yields the Euler equation

W' (c) = B | aV(a.y)/od |y | (1)
m For this problem, the envelope condition (see (5)) is
—"Vg‘;’ Y _ (141 (Clay) ¥)

where C(a, y) is the consumption policy function.

m Combine (1) and (2) to get the more “familiar” variant of the Euler equation:

W(0) = B+ nE| w (C(@.y) |y
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Using the Euler equation

m Assume we know or have guessed C(d’,v’)

m We can exogenously fix a’ and use u’(c) = ¢7¥ to get an equation in a single
unknown, c:

_1
c=(pa+nE|c@.y)7|y])
m From the BC, we can recover the implied beginning-of-period asset level a:

1

a= 1+r[c+a —y]

®3)

(4)
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Solution to household problem

m To summarise, we found
¢ =C*(d’,y) Optimal consumption as a function of a’
a=A"(a’,y) Beginning-of-period assets as a function of a’
m Each a] gives us a tuple (a;, ¢;):
m Use (a;, c,-)ﬁ“l' to interpolate consumption policy onto exogenous beginning-of-period
asset grid, c = C(a,y)
m Use (a;, a;)i:“l' to interpolate savings policy onto exogenous beginning-of-period asset
grid, a’ = A(a,y)
m Important: using the Euler eq. implies that HH is at interior solution!

m Implication: a = A*(0, y) for a’ = 0 is the highest asset level for which household does
not save anything.
m HH consumes everything for lower asset levels:

Cla,y)=(1+r)a+y Va<a
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Solution algorithm (infinite horizon)

. . o, ., ,
Fix exogenous savings grid a’ € Gy = (al, .. .,aNa,)

Fix initial guess for consumption policy, C1(a,y). Usually the guess is to consume
all resources.
In iteration n, proceed as follows:
For each point (a;, y;), compute the expectation

mi; =E [ Co-1(any) ™| y; |
Invert the Euler eq. as in (3) to get consumption today:
_1
cij = [ﬁ(l +r)m;j] Y
Use the budget constraint as in (4) to find beginning-of-period assets:

_ 1
T 1+r

aij [cij +aj - y;]

B Use the points (a;j, ¢;j) to get the updated consumption policy C, (e, y;) for each j.
Set Ch(a,y;) = (1+r)a+yjforalla < a;

Terminate iteration when C,,_1 and C,, are close.
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Solution algorithm (finite horizon)

. . . ’ _ ’ ’
Fix exogenous savings grid a’ € Gy = (al, .. .,aNa,)

Compute consumption policy in terminal period T: this is usually
Cr(a,y) = (1+r)a+y, unless there is a bequest motive.
For each period t =T - 1,T - 2,...,1, proceed as follows:
For each point (a;, y;), compute the expectation

m}; =E[ Cra(aly") ™| y; ]

Inver the Euler eq. as in (3) to get consumption today:

=<l

;= [B(1+ r)mgj]_
Use the budget constraint as in (4) to find beginning-of-period assets:

1

aij = 7= leij +ai -y

Use the points (a;j, c;;) to get consumption policy C;(e,y;) for each j. Set
Ci(ay;) =(1+r)a+yjforalla < a;
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Parametrisation for problem with risky labour

EGM with linear interpolation

m Assume labour process follows AR(1),

Yr+1 = PYr + €41

which we discretise as a Markov chain using the Rouwenhorst (1995) or Tauchen

(1986) methods.

m The next slides show solutions for the following parametrisation:

Et+1 El‘(‘i N (O, 0'2)

Description Value
p Discount factor 0.96
o Coef. of relative risk aversion 2
r Interest rate 0.04
P Autocorrelation of AR(1) process 0.95
o Conditional std. dev. of AR(1) process 0.20
Ny Number of states for Markov chain 3

Table 1: Parameters for HH problem with risky labour income
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Policy functions

EGM with linear interpolation

Solution for different income levels: low, middle, high

Savings a’ Consumption ¢
6 .
1.4 4
5 -
1.2 A
4_
1.0 A
3 -
0.8 1
2 ;
0.6
1 -
0.4 4
0 .
0 1 2 3 4 5 0 1 2 3 4 5
Assets Assets

Figure 3: Solution with approx. 100 points on savings grid.
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Functions of exogenous savings grid

EGM with linear interpolation

Solution for different income levels: low, middle, high

Consumption ¢ Assets a
1.4 A
5 .
1.2 1 4
1.0 34
0.8 27
1 -
0.6
0 .
0.4
T T T T _1 ] T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Exogenous savings a’ Exogenous savings a’

Figure 4: Solution with approx. 100 points on savings grid.
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Relative run times

Run times for solving the above problem with N, = Ny = 1000 and N, = 3:

Method Time (seconds)  Rel. time
VFI - grid search 12.8 1.00
VFI - linear interpolation 170.6 13.32
EGM 0.4 0.03
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When plain EGM fails

m Whenever we cannot determine where we “came from” (e.g. models with default)

m Discrete choices introduce jumps in policy functions:

Continuation value Consumption ¢ Savings a’
Va
/
Vi
0 a 0 a 0 a
Assets Assets Assets

Figure 5: Jumps due to discrete choice variables.
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Main take-aways

Use EGM whenever you can!

m With only one continuous state, no discrete choices:

m Straightforward application of plain EGM, potentially with minor extensions
m Also includes models with portfolio choice, intensive-margin labour supply

m VWith additional discrete choice variables:

m Probably works, but more tedious (e.g. Iskhakov et al. (2017))
m Still considerably faster than VFI

m With multiple continuous state variables:
m Probably not worth the effort
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Appendix



Envelope condition

m Consider the following value function, where a* are optimal savings a* = A(a, y):
Viay) =u((+na+y-a*)+fE| V(e |y

We used the BC to substitute for ¢* = (1+r)a+y —a*

m Take derivatives w.r.t. a:

1% ; , . * \% *’ *
%zu (1+r)a+y—a*) (1+r)—%]+ﬁE[%% y]
:u'(c*)(1+r)+%{—u’(c*)+/3E %:’y)‘y” (5)

=0

m The FOC implies that the second term on the r.h.s. is zero!

18/19



References |

Carroll, Christopher D. (2006). “The method of endogenous gridpoints for solving dynamic stochastic optimization
problems”. In: Economics Letters 91.3, pp. 312-320.

Druedahl, Jeppe and Thomas Hegholm Jargensen (2017). “A general endogenous grid method for multi-dimensional
models with non-convexities and constraints”. In: Journal of Economic Dynamics and Control 74, pp. 87-107.

Fella, Giulio (2014). “A generalized endogenous grid method for non-smooth and non-concave problems”. In: Review of
Economic Dynamics 17.2, pp. 329-344.

Iskhakov, Fedor et al. (2017). “The endogenous grid method for discrete-continuous dynamic choice models with (or
without) taste shocks”. In: Quantitative Economics 8.2, pp. 317-365.

Rouwenhorst, Geert K. (1995). “Asset Pricing Implications of Equilibrium Business Cycle Models”. In: Frontiers of
Business Cycle Research. Ed. by Thomas F. Cooley. Vol. 10. Princeton University Press. Chap. 10, pp. 294-330.

Tauchen, George (1986). “Finite state markov-chain approximations to univariate and vector autoregressions”. In:
Economics Letters 20.2, pp. 177-181.

19/19



	VFI with interpolation (risky income)
	References
	References

