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Heterogeneity in macroeconomics

So far, you studied representative-agent (RA) models: single household, single firm

When is the RA assumption justified? When is it problematic?
✓ Only interested in aggregate outcomes (quantities, prices)

✓ Economy aggregates (distribution of households is irrelevant)

✘ Economy does not aggregate: aggregate quantities or prices depend on
distribution of households

✘ Interested in distribution as such (e.g., to study inequality)

■ In this part of the course, we will be concerned with the last two cases
■ This is in line with a gradual move towards heterogeneous-agent models in

macroeconomics that started in the 1990s:
Example: RANK� TANK� HANK models for monetary policy analysis
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Course outline

Teaching week 6 (Feb 13–17)

■ Lecture: Unit 1: Introduction to heterogeneity in macro & inequality in the data

Teaching week 7 (Feb 20–24)

■ Seminar: Exercises presented by group 1
■ Lecture: Unit 2: Consumption over the lifecycle

Teaching week 8 (Feb 27–Mar 3)

■ Seminar: Exercises presented by group 2
■ Lecture: Unit 3: Consumption under uncertainty — Complete markets

Teaching week 9 (Mar 6–10)

■ Lecture: Unit 4: Consumption under uncertainty — Incomplete markets

Teaching week 10 (Mar 13–17)

■ Seminar: Exercises presented by group 3
■ Lecture: Unit 5: Overlapping generations models

Teaching week 11 (Mar 20–24)

■ In-course exam on March 23, 6–8:30pm

2 / 43



Outline for today

1 Consumption-savings models
Two-period model with borrowing
Two-period model without borrowing
Aggregation

2 Measures of inequality

3 Inequality in the US and UK

4 Main takeaways
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Two-period model with borrowing



Two-period household problem

■ Workhorse model used for remainder of the course:
Two-period consumption-savings problem
CRRA preferences
Exogenous labour supply
Endowment economy (no production)
Often in partial equilibrium (today: GE)

■ Household problem

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑎1 + 𝑦1
𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2
𝑐1 ≥ 0, 𝑐2 ≥ 0 (1)

■ We ignore non-negativity constraints (1) from now on

■ 𝑢 (•) assumed to be CRRA (constant relative risk aversion)
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CRRA preferences

■ Most frequently used preference class
in macroeconomics

■ Special case: logarithmic preferences

■ Utility function given by

𝑢 (𝑐) =
{
𝑐1−𝛾 −1
1−𝛾 if 𝛾 ≠ 1

log(𝑐) if 𝛾 = 1

Note: in economics log almost always
denotes the natural logarithm!

■ Parameter 𝛾 is called the coefficient of
relative risk aversion (RRA)
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Figure 1: CRRA utility for different values of the
relative risk aversion parameter 𝛾
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Two-period household problem with borrowing

■ Simplifications for today:
1 Log preferences: 𝑢 (𝑐) = log(𝑐)
2 No discounting: 𝛽 = 1

More general setting covered in exercises and later units

■ Simplified two-period problem

max
𝑐1, 𝑐2, 𝑎2

log(𝑐1) + log(𝑐2) (2)

s.t. 𝑐1 + 𝑎2 = 𝑦1 (3)

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2 (4)

■ No restriction on 𝑎2, household can save/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lendsave/lend (𝑎2 > 0) or borrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrowborrow (𝑎2 < 0)
■ Solution characterises optimal 𝑐1, 𝑐2 and 𝑎2 as a function of parameters and

exogenous quantities
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Solving the problem: First-order conditions
Two-period household problem with borrowing

Consolidate per-period budget constraints into present-value lifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetimelifetime budget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraintbudget constraint:
1 Substitute for 𝑎2 in (4) using (3): 𝑐2 = (1 + 𝑟 )

(
𝑦1 − 𝑐1

)
+ 𝑦2

2 Divide by 1 + 𝑟 , collect consumption on l.h.s., income on r.h.s.:

𝑐1 +
𝑐2

1 + 𝑟︸     ︷︷     ︸
PV of cons.

= 𝑦1 +
𝑦2

1 + 𝑟︸     ︷︷     ︸
PV of income

(5)

LagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangianLagrangian:

L = log(𝑐1) + log(𝑐2) + 𝜆

[
𝑦1 +

𝑦2

1 + 𝑟 − 𝑐1 −
𝑐2

1 + 𝑟

]
(6)

■ 𝜆 ≥ 0 is Lagrange multiplier for LTBC

First-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditions (FOC): take derivatives w.r.t. 𝑐1 and 𝑐2
𝜕L
𝜕𝑐1

=
1
𝑐1

− 𝜆 = 0 (7)

𝜕L
𝜕𝑐2

=
1
𝑐2

− 𝜆

1 + 𝑟 = 0 (8)
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Solving the problem: Euler equation
Two-period household problem with borrowing

We need to get rid of Lagrange multiplier 𝜆. From FOCs (7) + (8) we have:

𝜆 =
1
𝑐1

𝜆 = (1 + 𝑟 ) 1
𝑐2

Eliminating 𝜆, we get the Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation (EE):

1
𝑐1

= (1 + 𝑟 ) 1
𝑐2

(9)

Interpretation
■ Intertemporal optimality condition: household cannot do better by shifting

consumption between periods 1 and 2.
■ Could household do any better?

1 Decrease consumption by one unit today, lose marginal utility 1
𝑐1

2 Save one unit, get (1 + 𝑟 ) units tomorrow
3 Consumption tomorrow has marginal utility 1

𝑐2
per unit, so household gains (1 + 𝑟 ) 1

𝑐2

The Euler equation says that the household cannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better offcannot be better off by doing this, so (9)
has to hold!
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Solving the problem: Optimal consumption
Two-period household problem with borrowing

Solve Euler equation (9) for 𝑐2 = (1 + 𝑟 )𝑐1
Plug into lifetime budget constraint (5): optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1optimal consumption in 𝑡 = 1

𝑐1 +
(1 + 𝑟 )𝑐1
1 + 𝑟 = 𝑦1 +

𝑦2

1 + 𝑟 =⇒ 𝑐1 =
1
2

[
𝑦1 +

𝑦2

1 + 𝑟

]
(10)

Plug into EE to get optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2optimal consumption in 𝑡 = 2:

𝑐2 =
1
2

[
(1 + 𝑟 )𝑦1 + 𝑦2

]
(11)

Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem:Solution to HH problem: allocation (𝑐1, 𝑐2)

Interpretation
■ No discounting, no borrowing constraints, hence optimal to consume half of

lifetime income in each period
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General equilibrium
Two-period household problem with borrowing

■ So far we only solved partial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibriumpartial equilibrium problem

■ Interest rate 𝑟 taken as given

■ Need to specify income 𝑦1, 𝑦2 to solve for equilibrium 𝑟

Heterogeneous-agent economy with twotwotwotwotwotwotwotwotwotwotwotwotwotwotwotwotwo households
■ Households 𝐴 and 𝐵 have identical preferences, but different endowments:

𝑦𝐴1 = 3, 𝑦𝐴2 = 1
𝑦𝐵1 = 1, 𝑦𝐵2 = 3

■ Will households want to consume their income each period? — NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo! (contradicts
consumption smoothing)

■ 𝐴 and 𝐵 trade to attain higher utility: 𝐴 acts as lender, 𝐵 as borrower in period 1
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General equilibrium
Two-period household problem with borrowing

■ What is a general equilibrium? — Interest rate 𝑟 such that markets clear
■ Markets in this economy:

1 Goods market in period 1 (equivalent: market for savings)
2 Goods market in period 2

■ Solution approach: find 𝑟 to clear one market, other one clears by Walras’ law.

Example: goods market clearing in period 1

𝑐𝐴1 + 𝑐𝐵1︸  ︷︷  ︸
Aggregate consumption

= 𝑦𝐴1 + 𝑦𝐵1︸  ︷︷  ︸
Aggregate endowment

Equivalent to market for savings in period 1:

𝑦𝐴1 − 𝑐𝐴1︸  ︷︷  ︸
Savings by 𝐴

= 𝑐𝐵1 − 𝑦𝐵1︸  ︷︷  ︸
Borrowing by 𝐵

(12)
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General equilibrium: Market clearing
Two-period household problem with borrowing

Derive equilibrium interest rate 𝑟 from savings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings marketsavings market clearing using (10):

𝑦𝐴1 − 𝑐𝐴1 = 𝑐𝐵1 − 𝑦𝐵1

𝑦𝐴1 − 1
2

[
𝑦𝐴1 +

𝑦𝐴2
1 + 𝑟

]
=
1
2

[
𝑦𝐵1 +

𝑦𝐵2
1 + 𝑟

]
− 𝑦𝐵1

𝑦𝐴1 + 𝑦𝐵1 =
𝑦𝐴2 + 𝑦𝐵2
1 + 𝑟 (13)

Define aggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate incomeaggregate income in each period 𝑡 : 𝑌𝑡 = 𝑦𝐴𝑡 + 𝑦𝐵𝑡
Equilibrium interest rate follows from (13):

𝑌1 =
𝑌2

1 + 𝑟 =⇒ 𝑟 =
𝑌2

𝑌1
− 1 (14)

For our example we have: 𝑌1 = 𝑌2 = 4 =⇒ 𝑟 = 0

Explain the intuition behind 𝑟 = 0!
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General equilibrium: Allocation
Two-period household problem with borrowing
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Figure 2: General equilibrium in with borrowing. 1 shows the equilibrium allocation and the blue lines
are the corresponding indifference curves.
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Two-period model without borrowing



Two-period household problem without borrowing

■ Previous example: 𝐴 was lender, 𝐵 was borrower

■ What happens if we impose no-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraintno-borrowing constraint?

■ Household problem almost as before:

max
𝑐1, 𝑐2, 𝑎2

log(𝑐1) + log(𝑐2) (15)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2
𝑎2 ≥ 0 (16)

NewNewNewNewNewNewNewNewNewNewNewNewNewNewNewNewNew: Inequality constraint (16)

■ Remaining environment unchanged:
Two households, 𝐴 and 𝐵, with income

𝑦𝐴1 = 3, 𝑦𝐴2 = 1
𝑦𝐵1 = 1, 𝑦𝐵2 = 3
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Solution method
Two-period household problem without borrowing

Two possible approaches:

1 ShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcutShortcut exploiting economic intuition (and what we know from the previous
example with borrowing)

2 Solve constrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problemconstrained maximisation problem with occasionally binding borrowing
constraint
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Solution method: The shortcut
Two-period household problem without borrowing

Previously we found:
■ Type 𝐴 saves in equilibrium (this is still possible)
■ Type 𝐵 borrows in equilibrium (no longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possibleno longer possible)

Solution method
1 Type 𝐵 cannot borrow⇒ consumes income each period
2 No borrowing⇒ in equilibrium no one can save because there is no counterparty

(assets are in zero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supply)
3 Saving is permitted⇒ need to find equilibrium 𝑟 such that 𝐴 does not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to savedoes not want to save

How to find equilibrium 𝑟?
■ 𝐵’s Euler equation does not hold (not an interior solution)
■ Need to use 𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation with 𝑐𝐴1 = 𝑦𝐴1 and 𝑐𝐴2 = 𝑦𝐴2 :

1
𝑐𝐴1

= (1 + 𝑟 ) 1
𝑐𝐴2

=⇒ 1
𝑦𝐴1

= (1 + 𝑟 ) 1
𝑦𝐴2

=⇒ 𝑟 =
𝑦𝐴2

𝑦𝐴1
− 1

■ Equilibrium interest rate: 𝑟 = 1
3 − 1 ≈ −66.7% 𝑟 is very low! Intuition?
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General equilibrium: Allocation
Two-period household problem without borrowing
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Figure 3: General equilibrium without borrowing. 1 shows the unattainable allocation with borrowing,
while 2 is the new autarky allocation. The thick black line depicts the budget line without
borrowing, the blue line the indifference curve with borrowing, and the yellow line the
indifference curve without borrowing.
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Solution method: Constrained maximisation
Two-period household problem without borrowing

Set up Lagrangian with inequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraintsinequality constraints. Several ways to do this:

1 Use lifetime budget constraint as in (6), impose 𝑐1 ≤ 𝑦1 which implies 𝑎2 ≥ 0
2 Eliminate 𝑐1 and 𝑐2, leaving 𝑎2 as the only choice; impose 𝑎2 ≥ 0
3 Use per-period budget constraints, impose 𝑎2 ≥ 0

Lagrangian for variant 3 (compare to unconstrained variant in (6)):

L = log(𝑐1) + log(𝑐2) +𝜆1
[
𝑦1 − 𝑎2 − 𝑐1

]
︸           ︷︷           ︸
Budget constr. 𝑡=1

+𝜆2
[
(1 + 𝑟 )𝑎2 + 𝑦2 − 𝑐2

]
︸                    ︷︷                    ︸

Budget constr. 𝑡=2

+ 𝜆𝑎 · 𝑎2︸︷︷︸
Borrowing constr.

(17)

How to impose inequality constraints?
Example: want to impose 𝑥 ≥ 𝑦

1 Rewrite as 𝑥 − 𝑦 ≥ 0
2 Add to Lagrangian as 𝜆(𝑥 − 𝑦) with Lagrange multiplier 𝜆 ≥ 0
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Solving the problem: First-order conditions
Two-period household problem without borrowing

First-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditionsFirst-order conditions: take derivatives w.r.t. 𝑐1, 𝑐2, 𝑎2:

𝜕L
𝜕𝑐1

=
1
𝑐1

− 𝜆1 = 0 (18)

𝜕L
𝜕𝑐2

=
1
𝑐2

− 𝜆2 = 0 (19)

𝜕L
𝜕𝑎2

= −𝜆1 + 𝜆2(1 + 𝑟 ) + 𝜆𝑎 = 0 (20)

Complementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness conditionComplementary slackness condition: 𝜆𝑎 · 𝑎2 = 0
1 Constraint is binding⇒ 𝑎2 = 0, 𝜆𝑎 ≥ 0
2 Constraint not binding⇒ 𝑎2 > 0, 𝜆𝑎 = 0

In both cases, 𝜆𝑎 · 𝑎2 = 0 holds!

Intuition
■ Recall interpretation of Lagrange multiplier: change in objective if constraint is

relaxed by 1
■ If constraint is notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot binding, relaxing it does notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot change objective!
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Solving the problem: Euler equation
Two-period household problem without borrowing

Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation: consolidate FOCs, eliminate 𝜆1, 𝜆2

1
𝑐1

= (1 + 𝑟 ) 1
𝑐2

+ 𝜆𝑎 (21)

We don’t know 𝑟 or 𝜆𝑎 — so how is this useful?

Approach: Guess and verify

Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1Step 1: Guess

1 At equilibrium 𝑟 , type 𝐵 will be at constraint⇒ 𝜆𝐵𝑎 > 0
𝐵’s Euler equation is not helpful (too many unknowns)

2 𝐴 will not want to borrow⇒ 𝜆𝐴𝑎 = 0
3 Savings in zero net supply, so both 𝐴 and 𝐵 have to consume their income: 𝑐𝐴1 = 𝑦𝐴1 ,
𝑐𝐴2 = 𝑦𝐴2 , 𝑐

𝐵
1 = 𝑦𝐵1 , 𝑐

𝐵
2 = 𝑦𝐵2
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Solving the problem: Guess and verify
Two-period household problem without borrowing

Given our guess, 𝜆𝐴𝑎 = 0, so 𝑟 follows from 𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation𝐴’s Euler equation:

1
𝑐𝐴1

= (1 + 𝑟 ) 1
𝑐𝐴2

=⇒ 1
𝑦𝐴1

= (1 + 𝑟 ) 1
𝑦𝐴2

=⇒ 𝑟 =
𝑦𝐴2

𝑦𝐴1
− 1

Equilibrium interest rate: 𝑟 = 1
3 − 1 ≈ −66.7%

Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2Step 2: Verify
Plug equilibrium 𝑟 into 𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation𝐵’s Euler equation:

1
𝑐𝐵1

= (1 + 𝑟 ) 1
𝑐𝐵2

+ 𝜆𝐵𝑎 =⇒ 1
1
=

(
1 − 2

3

)
1
3
+ 𝜆𝐵𝑎

=⇒ 1 =
1
9
+ 𝜆𝐵𝑎

=⇒ 𝜆𝐵𝑎 =
8
9
> 0

Household 𝐵 is at borrowing constraint, as conjectured. ✓
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Aggregation



Do economies from previous examples aggregate?

■ Previous examples had heterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agentsheterogeneous agents (HA), 𝐴 and 𝐵

■ Assume we are only interested in aggregates:
Quantities: 𝐶𝑡 = 𝑐𝐴𝑡 + 𝑐𝐵𝑡 , 𝑌𝑡 = 𝑦𝐴𝑡 + 𝑦𝐵𝑡
Prices: 𝑟

■ Can we find representative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agentrepresentative-agent (RA) economy with a singlesinglesinglesinglesinglesinglesinglesinglesinglesinglesinglesinglesinglesinglesinglesinglesingle household that
generates these?

Assumptions:
1 RA has same preferences as 𝐴 and 𝐵

2 RA gets aggregate endowment 𝑌𝑡 = 𝑦𝐴𝑡 + 𝑦𝐵𝑡 :

𝑌1 = 𝑦𝐴1 + 𝑦𝐵1 = 3 + 1 = 4

𝑌2 = 𝑦𝐴2 + 𝑦𝐵2 = 1 + 3 = 4
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Aggregation: Economy with borrowing

■ RA solves the same maximisation problem, Euler equation same as in (9):

1
𝐶1

= (1 + 𝑟 ∗) 1
𝐶2

■ No trade in equilibrium (no one to trade with!):

𝐶1 = 𝑌1 𝐶2 = 𝑌2

■ Equilibrium interest rate 𝑟 ∗ needs to satisfy Euler equation:

𝑟 ∗ =
𝐶2

𝐶1
− 1 =

𝑌2

𝑌1
− 1 =

4
4
− 1 = 0

Same expression as in (14) for heterogeneous-agent economy.

Conclusion: 𝑟 ∗ = 𝑟 , economy aggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregates!
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Aggregation: Economy without borrowing

■ For the RA, nothing changed compared to scenario with borrowing.
In particular, we still have 𝑌1 = 𝑌2 = 4

■ Euler equation yields same equilibrium interest rates as before, 𝑟 ∗ = 0
■ Compare to HA economy: 𝑟 = −66.7%

Conclusion: 𝑟 ∗ ≠ 𝑟 , economy does not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregatedoes not aggregate!

Aggregation usually fails with incomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete marketsincomplete markets, e.g.,

■ Idiosyncratic risk that cannot be perfectly insured

■ Borrowing constraints
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Measures of inequality



Measures of inequality

Why do we need to quantify heterogeneity?
■ Previous section: heterogeneity can matter for aggregates

■ Heterogeneity interesting in itself (e.g., to study inequality)

Along which dimensions do we observe inequality in the data?
■ Wealth

■ Income, employment status

■ Consumption, Leisure

■ Age, health, life expectancy

Which inequality measures have you encountered so far?
■ Gini coefficient (Lorenz curve)

■ Variance of logs

■ Percentile ratios: 90–10, 90–50, 50–10
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Lorenz curve & Gini coefficient
Measures of inequality

■ Measures distance from perfect
equality:

Gini = 0: everyone has same amount
Gini = 1: everything is owned by one
person or household

■ Gini can be computed using size of
areas 𝐴 and 𝐵:

G =
𝐴

𝐴 + 𝐵
= 2𝐴 = 1 − 2𝐵

■ Example shown in figure:
Lower quartile owns 6%
Lower three quartiles own 56% 0.00 0.25 0.75 1.00
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Figure 4: Lorenz curve and graphical representation
of the Gini coefficient
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Lorenz curve & Gini coefficient
Measures of inequality

Illustration of extreme cases: Gini = 0, Gini = 1
■ Gini can exceed 1 if variable of interest can be negative (e.g., net worth)
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Figure 5: Lorenz curve and Gini for the extreme cases of “perfect” equality and inequality.
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Example: Income distribution
Measures of inequality

■ Hypothetical income distribution in
economy with 5 households:

HH Income in $ Share Cum. share

1 15,750 3.0% 3.0%
2 35,650 6.7% 9.7%
3 58,950 11.1% 20.8%
4 96,790 18.2% 39.0%
5 324,090 61.0% 100.0%

■ Closely represents mean income by
quintile in US (based on SCF)
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Figure 6: Lorenz curve and Gini for hypothetical
income distribution
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Example: Wealth distribution
Measures of inequality

■ Hypothetical wealth distribution in
economy with 4 households:

HH Wealth in $ Share Cum. share

1 −13,630 −0.5% −0.5%
2 58,180 1.9% 1.5%
3 236,280 7.9% 9.4%
4 2,706,290 90.6% 100.0%

■ Approximates mean net worth by
quartile in US (based on SCF)
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Figure 7: Lorenz curve and Gini for hypothetical
wealth distribution
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Other inequality measures
Measures of inequality

Why more than one?
■ No unique or best way to summarise whole distribution in a single statistic

■ Measures respond differently to inequality in different parts of the distribution

Other inequality measures
■ Variance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logsVariance of logs: less sensitive to inequality at the top
■ Percentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratiosPercentile ratios: 90–10, 90–50, 50–10

Measure relative distance between two percentiles of a distribution
Example: if 90–10 ratio = 5, then household at 90th percentile has five times more
resources than household at 10th percentile

■ Allow us to zoom in on specific parts of the distribution
Example: movements in 50–10 tell us about changes in bottom half of distribution
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Inequality in the US and UK



Inequality in the data

Which data would you collect to measure inequality?

We need micro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro datamicro data on individuals or households, not (aggregate) time series!

■ Panel (longitudinal) data

■ Cross-sectional data

■ Rotating (short) panels

How would you rank inequality in wealth, gross income, disposable income, and
consumption?

We usually observe the following ranking (in decreasing order):

1 Wealth

2 Gross income

3 Disposable income

4 Consumption
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Inequality in the US

Public data sources for the US
■ Current Population Survey (CPS)

■ Panel Study of Income Dynamics (PSID)

■ Health and Retirement Study (HRS)

■ Survey of Consumer Finances (SCF)

■ Consumption Expenditure Survey (CEX)

Data sets differ in variables they collect (consumption, income, wealth) and which
samples they target (representative for the US, the elderly, etc.)
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Inequality trends in the US

■ Income Gini increased substantially (0.43 in 1971 to 0.58 in 2016)
■ Less clear trend in wealth Gini
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Figure 8: Gini for gross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household incomegross household income (including transfers) and household net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worthhousehold net worth in the US,
1950–2016. Data source: Kuhn, Schularick, and Steins (2020, Table E.5)
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Income and wealth shares in the US

■ Gini does not easily convey which parts of the distribution gained or lost
■ Look at income and wealth shares instead!
■ Top 10% increased income share from 36% to 48%
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Figure 9: Shares of income and wealth in the US, 1950–2016. Data source: Kuhn, Schularick, and Steins
(2020, Table E.4)
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Income and wealth growth in the US

■ Income growth diverged already in 1970s
■ Wealth growth much more even until about 2000
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Figure 10: Income and wealth growth for the bottom 50%, the middle class (50%–90%) and the top 10% of
the wealth distribution. All time series are normalised to one in 1971. The dashed vertical line in
2007 shows the Great Recession. Source: Kuhn, Schularick, and Steins (2020, Figure 12)

35 / 43



Consumption inequality in the US

As economists, shouldn’t we only care about consumption / leisure inequality?
■ Consumption inequality is smaller: (in-kind) transfers, intra-family insurance, etc.
■ Increase over last decades tracks rise in income inequality

Figure 11: Difference between the 90th and the 10th percentiles of distribution of the logarithm of
food consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumptionfood consumption, 1977–2012. Source: Attanasio and Pistaferri (2016, Figure 2), based on PSID
data.
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Consumption inequality in the US

Consumption inequality in durable goods (ownership rates)

Figure 12: Ownership rates for selected durables for top and bottom after-tax income deciles. Source:
Attanasio and Pistaferri (2016, Figure 3), based on CEX.
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Leisure inequality in the US

■ Can more leisure compensate for lower income or consumption?
■ More leisure can be involuntary (e.g., unemployment)

Figure 13: Total leisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per weekleisure hours per week, defined as the sum of social activities, active and passive leisure,
and time devoted to personal care (which includes sleeping). Source: Attanasio and Pistaferri
(2016, Figure 4), based on US time use data.
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Data sets to study inequality in the UK

Public data sources for the UK
■ British Household Panel Survey (BHPS)

■ Understanding Society

■ Labour Force Survey (LFS)

■ Family Resources Survey (FRS)

■ Living Costs and Food Survey (LCF)
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Income inequality in the UK

■ Upward trend in 1970s and 1980s similar to US

■ Broadly constant thereafter, or even decreasing in bottom 90%

Figure 14: The Gini coefficient and the 90-10 ratio of net household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household incomenet household income (adjusted for household size) in
Great Britain, 1961–2014. Source: Belfield et al. (2017, Figure 2)
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Income inequality in the UK

Income inequality from gross income to disposable income: illustrates redistributive
tax/transfer system.

Figure 15: Change in inequality when moving from gross income to disposable income. Source: Blundell
and Etheridge (2010, Figure 4.4), based on FES data
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Main takeaways from this unit



Main takeaways

Models / theory

We introduced the following concepts:

1 Heterogeneous agents (HA) in general equilibrium models

2 Borrowing constraints, constrained optimisation

3 Aggregation: can representative-agent (RA) model replicate aggregate quantities
and prices of HA model?

Inequality in the data
1 Inequality measures: Gini coefficient, variance of logs, percentile ratios

2 Inequality ranking: wealth ≻ income ≻ consumption

3 Redistributive taxes and transfers mitigate inequality: gross income ≻ disposable
income

4 Income inequality increased over last five decades, more so in the US than the UK
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Outline for today

1 Consumption responses to changes in interest rate
Income, substitution and wealth effects
Elasticity of intertemporal substitution

2 Life cycle models with many periods

3 Life cycle profiles in the data

4 Main takeaways
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Substitution, income and wealth effects



Income and substitution effects with log preferences

Model environment
■ Two-period consumption-savings problem

■ Log preferences

■ No income in period 2 (we relax this below)

■ Partial equilibrium (exogenous 𝑟 )

■ Household solves:

max
𝑐1, 𝑐2, 𝑎2

log(𝑐1) + 𝛽 log(𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑎1 + 𝑦1
𝑐2 = (1 + 𝑟 )𝑎2

Want to answer the following:
■ How do optimal (𝑐1, 𝑐2) respond to changes in 𝑟?

■ How to decompose total response into income and substitution effect?
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Solving the problem: Rinse/repeat from unit 1
Log preferences, no period-2 income

1 Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = 𝑦1 (1)

2 Lagrangian:

L = log(𝑐1) + 𝛽 log(𝑐2)

+ 𝜆

[
𝑦1 − 𝑐1 −

𝑐2

1 + 𝑟

]
3 First-order conditions for 𝑐1, 𝑐2:

𝜕L
𝜕𝑐1

=
1
𝑐1

− 𝜆 = 0 (2)

𝜕L
𝜕𝑐2

= 𝛽
1
𝑐2

− 𝜆
1

1 + 𝑟 = 0 (3)

3 Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation: (2) + (3)

1
𝑐1

= 𝛽 (1 + 𝑟 ) 1
𝑐2

(4)

4 Optimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumption: (1) + (4)

𝑐1 =
1

1 + 𝛽
𝑦1 (5)

𝑐2 =
𝛽

1 + 𝛽
(1 + 𝑟 )𝑦1 (6)
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Consumption response to changes in 𝑟
Log preferences, no period-2 income

How does 𝑐1 in (5) respond to changes in 𝑟? — Not at all, does not depend on 𝑟 !

Why? — Income and substitution effects cancel for log preferences

Substitution effect
■ Change in demand as relative price changes while keeping utility level constant

Income effect
■ Often defined as the residual after accounting for SE
■ Depends on net asset position:

Lender: interest rate ^ =⇒ interest income ^
Borrower: interest rate ^ =⇒ cost of borrowing ^

■ Consumption in both periods are normal goods, hence:
Household gets richer =⇒ 𝑐1, 𝑐2 ^
Household gets poorer =⇒ 𝑐1, 𝑐2 _
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Income and substitution effects
Log preferences, no period-2 income
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Figure 1: Income and substitution effects of an increase in 𝑟 for a lenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlender with log preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferences and no
second-period income
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Substitution, income and wealth effects
Log preferences and period-2 income

In previous example, household received all income in first period.

How would our findings change with income in period 2?

Wealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effectWealth effect: Present value of income in later periods responds to changes in 𝑟

■ Even with log preferences, change in 𝑟 affects consumption 𝑐1

Illustration with income in both periods
■ Household solves:

max
𝑐1, 𝑐2, 𝑎2

log(𝑐1) + 𝛽 log(𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑎1 + 𝑦1
𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2

NewNewNewNewNewNewNewNewNewNewNewNewNewNewNewNewNew: Receives income (𝑦1, 𝑦2) in both periods
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Solving the problem: Rinse/repeat from unit 1
Log preferences and period-2 income

1 Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = 𝑦1 +
𝑦2

1 + 𝑟 (7)

2 Lagrangian:

L = log(𝑐1) + 𝛽 log(𝑐2)

+ 𝜆

[
𝑦1 +

𝑦2

1 + 𝑟 − 𝑐1 −
𝑐2

1 + 𝑟

]
3 First-order conditions for 𝑐1, 𝑐2:

𝜕L
𝜕𝑐1

=
1
𝑐1

− 𝜆 = 0 (8)

𝜕L
𝜕𝑐2

= 𝛽
1
𝑐2

− 𝜆
1

1 + 𝑟 = 0 (9)

3 Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation: (8) + (9)

1
𝑐1

= 𝛽 (1 + 𝑟 ) 1
𝑐2

(10)

4 Optimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumptionOptimal consumption: (7) + (10)

𝑐1 =
1

1 + 𝛽

[
𝑦1 +

𝑦2

1 + 𝑟

]
(11)

𝑐2 =
𝛽

1 + 𝛽

[
(1 + 𝑟 )𝑦1 + 𝑦2

]
(12)
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Consumption response to changes in 𝑟
Log preferences and period-2 income

How does 𝑐1 respond to changes in 𝑟?
■ Eq. (11) clearly decreasing in 𝑟

■ Previously 𝑐1 did not respond at all.

Now: 𝑟 ^ =⇒ PV of income _ =⇒ 𝑐1 _

■ Often referred to as wealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effectwealth effect, but terminology varies
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Income, substitution and wealth effects
Log preferences and period-2 income
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Figure 2: Income and substitution effects of an increase in 𝑟 for a lender with log preferences and income in
both periods
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Summary: Consumption response to changes in 𝑟
Log preferences and period-2 income

Summary: Decomposition for lenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlenderlender as 𝑟 increasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreasesincreases

Decomposition 𝜕𝑐1/𝜕𝑟

Substitution effect < 0
Income effect > 0
Wealth effect ≤ 0 Depends on timing of income

Total effect ?

Table 1: Decomposition of change in lender’s period-1 consumption following an increase in 𝑟

What about borrowers? — See exercises
What about decrease in 𝑟?
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Consumption growth and the EIS

What determines magnitude of substitution effect?
■ Or equivalently: what determines changes in consumption growth 𝑐2/𝑐1?
■ Previous graphs suggest link to curvature of indifference curves
■ We want to formalise this willingness to shift consumption as 𝑟 changes

Characterised by elasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitutionelasticity of intertemporal substitution (EIS)
Log preferences restricted to EIS = 1, so we study general CRRA preferences

Household problem with CRRA preferences
■ Household solves:

max
𝑐1, 𝑐2, 𝑎2

𝑐
1−𝛾
1

1 − 𝛾
+ 𝛽

𝑐
1−𝛾
2

1 − 𝛾

s.t. 𝑐1 + 𝑎2 = 𝑎1 + 𝑦1
𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2

NewNewNewNewNewNewNewNewNewNewNewNewNewNewNewNewNew: CRRA utility 𝑢 (𝑐) = 𝑐1−𝛾

1−𝛾
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Recall from unit 1: CRRA preferences

■ Most frequently used preference class
in macroeconomics

■ Special case: logarithmic preferences

■ Utility function given by

𝑢 (𝑐) =
{
𝑐1−𝛾 −1
1−𝛾 if 𝛾 ≠ 1

log(𝑐) if 𝛾 = 1

Note: in economics log almost always
denotes the natural logarithm!

■ Parameter 𝛾 is called the coefficient of
relative risk aversion (RRA)
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Figure 3: CRRA utility for different values of the
relative risk aversion parameter 𝛾 .
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Solving the problem: CRRA preferences

1 Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = 𝑦1 +
𝑦2

1 + 𝑟 (13)

2 Lagrangian:

L =
𝑐
1−𝛾
1

1 − 𝛾
+ 𝛽

𝑐
1−𝛾
2

1 − 𝛾

+ 𝜆

[
𝑦1 +

𝑦2

1 + 𝑟 − 𝑐1 −
𝑐2

1 + 𝑟

]
3 First-order conditions for 𝑐1, 𝑐2:

𝜕L
𝜕𝑐1

= 𝑐
−𝛾
1 − 𝜆 = 0 (14)

𝜕L
𝜕𝑐2

= 𝛽𝑐
−𝛾
2 − 𝜆

1
1 + 𝑟 = 0 (15)

3 Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation: (14) + (15)

𝑐
−𝛾
1 = 𝛽 (1 + 𝑟 )𝑐−𝛾2 (16)

4 Optimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growthOptimal consumption growth from
(16)

𝑐2

𝑐1
=
[
𝛽 (1 + 𝑟 )

] 1
𝛾 (17)

Don’t need to fully solve for optimal
𝑐1, 𝑐2 to say something about the SE
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Consumption growth
Derivation of consumption growth formula

Goal: Approximate consumption growth in (17)

Steps 1–3
1 For small 𝑥 , we have log(1 + 𝑥) ≈ 𝑥 . Apply to consumption ratio:

log(𝑐2/𝑐1) = log
(
1 + 𝑐2 − 𝑐1

𝑐1

)
≈ 𝑐2 − 𝑐1

𝑐1
(18)

2 Take logs in (17):

𝑐2 − 𝑐1

𝑐1
≈ log(𝑐2/𝑐1) = log

( [
𝛽 (1 + 𝑟 )

] 1
𝛾

)
=
1
𝛾

[
log(1 + 𝑟 ) + log(𝛽)

]
≈ 1
𝛾

[
𝑟 + log(𝛽)

]
(19)

3 Define rate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preferencerate of time preference 𝜌 such that 𝛽 ≡ 1
1+𝜌

log(𝛽) = log
(

1
1 + 𝜌

)
= log(1) − log(1 + 𝜌) ≈ −𝜌 (20)
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Consumption growth
Derivation of consumption growth formula

Step 4
4 Plug (20) into (19) to get approximate consumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rateconsumption growth rate:

𝑐2 − 𝑐1

𝑐1
≈ 1
𝛾

(
𝑟 − 𝜌

)
(21)

Interpretation?
Consumption growth depends on sign of 𝑟 − 𝜌

■ 𝑟 > 𝜌 : Market return higher than time preference rate =⇒ HH shifts
consumption to period 2

■ 𝑟 = 𝜌 : Market and HH discount future at same rate, 𝑐2 = 𝑐1

■ 𝑟 < 𝜌 : HH discounts future more heavily =⇒ shifts consumption to period 1

1
𝛾
governs how strongly household responds to gap in 𝑟 − 𝜌
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Elasticity of intertemporal substitution (EIS)

What exactly is this 1
𝛾
?

■ We show that this is the elasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticityelasticity of 𝑐2/𝑐1 with respect to (1 + 𝑟 )

Recall from microeconomics:

Definition (Elasticity)

The elasticity of 𝑦 with respect to 𝑥 is defined as

𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 =
𝑑𝑦/𝑦
𝑑𝑥/𝑥 =

𝑑𝑦

𝑑𝑥

𝑥

𝑦
=
𝑑 log𝑦
𝑑 log𝑥

Interpretation
Unit-free measure that links relativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelative changes in 𝑦 to relativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelativerelative changes in 𝑥 .

𝑑𝑦/𝑦︸︷︷︸
% change in 𝑦

= 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 × 𝑑𝑥/𝑥︸︷︷︸
% change in 𝑥

16 / 42



Elasticity of intertemporal substitution (EIS)

In the context of our consumption-savings
model:

Definition (EIS)

The elasticity of intertemporal substitution
(EIS) is

𝐸𝐼𝑆 =
𝑑 log (𝑐2/𝑐1)
𝑑 log(1 + 𝑟 ) (22)

Find expression for elasticity (22):

1 Take logs of (17):

log(𝑐2/𝑐1) =
1
𝛾
log 𝛽 + 1

𝛾
log(1 + 𝑟 )

2 Take derivative w.r.t. log(1 + 𝑟 )

𝐸𝐼𝑆 =
𝑑 log (𝑐2/𝑐1)
𝑑 log(1 + 𝑟 ) =

1
𝛾

EIS is a constant =⇒ isolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolasticisolastic preferences!
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Elasticity of intertemporal substitution (EIS)

Summary of findings
■ For CRRA preferences, 𝐸𝐼𝑆 = 1

𝑅𝑅𝐴
= 1

𝛾

■ EIS does not depend on specific values of 𝑐2/𝑐1
■ EIS governs how 𝑐2/𝑐1 responds to changes in 𝑟 :

Low EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EISLow EIS: Consumption is inelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelasticinelastic (the substitution effect is small)

Even large changes in 𝑟 move 𝑐2/𝑐1 only by small mount.

EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1EIS = 1: Log preferences

High EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EISHigh EIS: Consumption is elasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelasticelastic (the substitution effect is large)

Small changes in 𝑟 can move 𝑐2/𝑐1 a lot!

Important: Our findings assume an interiorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinteriorinterior solution — constrained HH might not
respond at all to changes in 𝑟 .
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Elasticity of intertemporal substitution (EIS)

Graphical illustration of small (left) vs. large (right) EIS
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Figure 4: Substitution effect of an increase in 𝑟 for different EIS values.
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Life cycle model with many periods



Life cycle model with two periods

Two-period model as stylised life cycle
Period 1: Household receives income,

represents ≈ 45 years of working
life

Period 2: Retirement, household lives off
savings from period 1

Example: Figure 5 with 𝛽 = 1, 𝑟 = 0
■ Income received only in the first period

■ Consumption is perfectly smoothed
across both periods

■ Saving equals dissaving
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Period 1 = Working age Period 2 = Retirement

Figure 5: Stylised two-period life cycle model
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Life cycle model with many periods

Natural extension to many periods:

■ Life span of 𝑇 = 60
■ Age 𝑡 = 0, 1, . . . ,𝑇 − 1
■ Working life of 𝑁 = 45 periods

Example: Figure 6 with 𝛽 = 1, 𝑟 = 0
■ Constant income while working, no

income in retirement:

𝑦𝑡 =

{
𝑦 if 𝑡 < 𝑁

0 if 𝑡 ≥ 𝑁

■ Consumption is perfectly smoothed
across all periods
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Figure 6: Stylised 60-period life cycle model
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Life cycle model with CRRA preferences



Household problem
Life cycle model with many periods

Maximisation problem

max
{𝑐𝑡 , 𝑎𝑡+1}𝑇 −1

𝑡=0

𝑇−1∑︁
𝑡=0

𝛽𝑡𝑢 (𝑐𝑡 ) (23)

s.t. 𝑐𝑡 + 𝑎𝑡+1 = (1 + 𝑟 )𝑎𝑡 + 𝑦𝑡 ∀ 𝑡 (24)

𝑎𝑇 ≥ 0, 𝑎0 given (25)

■ CRRA preferences 𝑢 (𝑐) = 𝑐1−𝛾

1−𝛾
■ In each period, household chooses 𝑐𝑡 and 𝑎𝑡+1 for all 𝑡 = 0, 1, . . . ,𝑇 − 1
■ Receives per-period income 𝑦𝑡
■ Household cannot die in debt: 𝑎𝑇 ≥ 0
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Solving the problem
Life cycle model with many periods

■ Lifetime budget constraint can be derived by repeated substitution

𝑇−1∑︁
𝑡=0

𝑐𝑡

(1 + 𝑟 )𝑡︸        ︷︷        ︸
PV of cons.

= (1 + 𝑟 )𝑎0︸    ︷︷    ︸
Init. wealth

+
𝑇−1∑︁
𝑡=0

𝑦𝑡

(1 + 𝑟 )𝑡︸        ︷︷        ︸
PV of income

(26)

■ Lagrangian:

L =

𝑇−1∑︁
𝑡=0

𝛽𝑡𝑢 (𝑐𝑡 ) + 𝜆

[
(1 + 𝑟 )𝑎0 +

𝑇−1∑︁
𝑡=0

𝑦𝑡

(1 + 𝑟 )𝑡 −
𝑇−1∑︁
𝑡=0

𝑐𝑡

(1 + 𝑟 )𝑡

]
(27)

■ First-order condition for 𝑐𝑡 in anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany period 𝑡 :

𝜕L
𝜕𝑐𝑡

= 𝛽𝑡𝑢′(𝑐𝑡 ) −
𝜆

(1 + 𝑟 )𝑡 = 0 (28)
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Solving the problem: Euler equation

■ We need to eliminate 𝜆 in (28). Use FOC for 𝑐𝑡+1:

𝜕L
𝜕𝑐𝑡+1

= 𝛽𝑡+1𝑢′(𝑐𝑡+1) −
𝜆

(1 + 𝑟 )𝑡+1 = 0 (29)

■ Solve for 𝜆 in (28) and (29), equate expressions:

𝛽𝑡 (1 + 𝑟 )𝑡𝑢′(𝑐𝑡 ) = 𝛽𝑡+1(1 + 𝑟 )𝑡+1𝑢′(𝑐𝑡+1)

■ Cancel common terms to obtain Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation:

𝑢′(𝑐𝑡 ) = 𝛽 (1 + 𝑟 )𝑢′(𝑐𝑡+1)

For CRRA preferences:
𝑐
−𝛾
𝑡 = 𝛽 (1 + 𝑟 )𝑐−𝛾

𝑡+1 (30)
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Example:
Model with constant income and retirement



Example: Model with constant income and retirement

Let’s solve the example shown in Figure 6:

■ HH lives for 𝑇 = 60 periods, working life of 𝑁 = 45 periods
■ No initial assets, 𝑎0 = 0
■ Assume 𝛽 = 1, 𝑟 = 0
■ Income constant while working, no income in retirement:

𝑦𝑡 =

{
𝑦 if 𝑡 < 𝑁

0 if 𝑡 ≥ 𝑁

Solving the problem
■ From Euler equation (30):

𝑐
−𝛾
𝑡 = 𝛽 (1 + 𝑟 )𝑐−𝛾

𝑡+1 =⇒ 𝑐
−𝛾
𝑡 = 𝑐

−𝛾
𝑡+1 =⇒ 𝑐𝑡 = 𝑐𝑡+1

Consumption is constant, 𝑐𝑡 = 𝑐 for all 𝑡
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Solving the problem
Model with constant income and retirement

Find optional 𝑐 from lifetime budget constraint:

1 PV of lifetime consumption (l.h.s. of (26)):

𝑇−1∑︁
𝑡=0

𝑐𝑡

(1 + 𝑟 )𝑡 =

𝑇−1∑︁
𝑡=0

𝑐 = 𝑇𝑐 (31)

2 PV of lifetime income (r.h.s. of (26)):

(1 + 𝑟 )𝑎0 +
𝑇−1∑︁
𝑡=0

𝑦𝑡

(1 + 𝑟 )𝑡 =

𝑁−1∑︁
𝑡=0

𝑦 = 𝑁𝑦 (32)

3 Use LTBC, solve for 𝑐 :

𝑇𝑐 = 𝑁𝑦 =⇒ 𝑐 =
𝑁

𝑇
𝑦 (33)

While working, each period the household
consumes fraction 𝑁 /𝑇 of income
saves fraction (1 − 𝑁 /𝑇 ) for retirement
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Lifecycle profiles of income, consumption and assets
Model with constant income and retirement
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Figure 7: Life cycle profiles of income, consumption and assets for model with log preferences, 𝑟 = 0 and
𝛽 = 1. Dots indicate choices at each age.
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Example:
Model with log preferences and discounting



Example: Model with log preferences and discounting

Small extension to previous example:
■ HH discounts future with 𝛽 < 1
■ Log preferences: 𝛾 = 1
■ Remaining parameters unchanged

Solving the problem
■ From Euler equation (30):

𝑐
−𝛾
𝑡 = 𝛽 (1 + 𝑟 )𝑐−𝛾

𝑡+1 =⇒ 𝑐−1𝑡 = 𝛽𝑐−1𝑡+1 =⇒ 𝑐𝑡+1 = 𝛽𝑐𝑡

■ Expression 𝑐𝑡 as function of 𝑐0:

𝑐1 = 𝛽𝑐0

𝑐2 = 𝛽𝑐1 = 𝛽2𝑐0

...

𝑐𝑡 = 𝛽𝑡𝑐0

Consumption no longer constant!
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Solving the problem
Model with log preferences and discounting

Find optional 𝑐 from lifetime budget constraint:
1 PV of lifetime consumption (l.h.s. of (26)):

𝑇−1∑︁
𝑡=0

𝑐𝑡

(1 + 𝑟 )𝑡 =

𝑇−1∑︁
𝑡=0

𝛽𝑡𝑐0 = 𝑐0

𝑇−1∑︁
𝑡=0

𝛽𝑡 = 𝑐0

[
1 + 𝛽 + 𝛽2 + · · · + 𝛽𝑇−1

]
= 𝑐0

1 − 𝛽𝑇

1 − 𝛽

2 PV of lifetime income (r.h.s. of (26)) — unchanged from earlier:

(1 + 𝑟 )𝑎0 +
𝑇−1∑︁
𝑡=0

𝑦𝑡

(1 + 𝑟 )𝑡 =

𝑁−1∑︁
𝑡=0

𝑦 = 𝑁𝑦

3 Use LTBC, solve for 𝑐 :

𝑐0
1 − 𝛽𝑇

1 − 𝛽
= 𝑁𝑦

=⇒ 𝑐0 =
1 − 𝛽

1 − 𝛽𝑇
𝑁𝑦 =

1
1 + 𝛽 + 𝛽2 + · · · + 𝛽𝑇−1𝑁𝑦

Now 𝑐0 >
𝑁
𝑇
𝑦 as HH is more impatient!
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Lifecycle profiles of income, consumption and assets
Model with log preferences and discounting

Numerical example with 𝛽 = 0.96: 𝑐0 = 1.97 > 𝑦 = 1
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(a) Saving/dissaving over the life cycle
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(b) Profiles for income, consumption and assets

Figure 8: Life cycle profiles of income, consumption and assets for model with log preferences, 𝑟 = 0 and
𝛽 = 0.96
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Example:
Consumption growth in general CRRA model



Consumption growth and EIS

■ Generalising the model to 𝑟 ≠ 0, 𝛾 ≠ 1, etc. makes solution much more tedious

■ However, we can say something about consumption growth just from Euler
equation in (30):

𝑐𝑡+1
𝑐𝑡

=
[
𝛽 (1 + 𝑟 )

] 1
𝛾

Example: low vs. high EIS
■ Let 𝛽 = 0.96, 𝑟 = 0.05 =⇒ 𝛽 (1 + 𝑟 ) > 1 =⇒ 𝑐𝑡+1

𝑐𝑡
> 1

■ Household will want to save, consume later in life!

■ Two EIS scenarios:
EIS = 1

2 : Low consumption growth
EIS = 2: High consumption growth
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Consumption/savings over the life cycle
Low vs. high EIS
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(b) EIS = 2

Figure 9: Income and consumption profiles for different EIS values with 𝛽 = 0.96 and 𝑟 = 0.05.
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Asset profiles over the life cycle
Low vs. high EIS
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Figure 10: Life cycle profiles for assets for different EIS values with 𝛽 = 0.96 and 𝑟 = 0.05.
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Life cycle model with earnings growth

■ In the data, most people have growing earnings trajectories
Take income profile from Cocco, Gomes, and Maenhout (2005)

■ Set (1 + 𝑟 ) = 𝛽−1 = 1.04
■ HH borrows against rising future income!
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Figure 11: Life cycle profiles for income, consumption and assets.
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Life cycle profiles in the data



Model predictions vs. data

Predictions from our (simple) life cycle model with borrowing:
1 Households smooth consumption

Consumption disconnected from income in that particular period
Perfect consumption smoothing if 𝑟 = 𝜌

2 Asset position adjusts to bridge gap between consumption and income:
Rising income profile =⇒ borrowing early in life
Assets approach zero as household approaches end of life

Do these predictions hold in the data?
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Data: Consumption vs. income in the UK

Household income and consumption by age and education

Figure 12: Average income and (nondurable) consumption by education in £/week. Source: Attanasio and
Weber (2010, Figure 1), based on UK Family Expenditure Survey 1978–2007
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Data: Consumption vs. income in the UK

Household income and consumption by age, education and cohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohort.
■ Older cohorts are poorer, controlling for this flattens profiles!

Figure 13: Average income and (nondurable) consumption by cohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohortcohort and education in £/week. Source:
Attanasio and Weber (2010, Figure 1), based on UK Family Expenditure Survey 1978–2007
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Data: Consumption vs. income in the UK

Per capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capitaPer capita household income and consumption by age, education and cohort
■ Controlling for household size flattens profiles even more!

Figure 14: Average per capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capitaper capita income and (nondurable) consumption by cohort and education in £/week.
Source: Attanasio and Weber (2010, Figure 1), based on UK Family Expenditure Survey
1978–2007
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Data: Net worth in the US

Some evidence for consumption smoothing, but asset profile looks nothing like model
prediction!
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Figure 15: Median net worth and gross household labour income (incl. retirement benefits) in thousands of
2009 USD. Medians are computed within 5-year age bins. Data source: SCF 1998–2007
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Data: Net worth in the US

■ With rising earnings profile as in Figure 15b, model predicts borrowing in early life

■ Median household has positive net worth at all ages (including housing and
mortgages)

■ High levels of asset holdings until old age:
Bequest motives?
Insurance against health shocks and long-term care needs?
Net worth mostly due to primary residence? — HH do not want to or cannot downsize
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Main takeaways from this unit



Main takeaways

Models / theory

We introduced the following concepts:
1 Decomposition of consumption responses to changes in 𝑟 :

Substitution effect (SE) due to change in relative price
Income effect (IE) for lenders/borrowers
Wealth effect due to change in present value of future income

2 Elasticity of intertemporal substitution: quantifies magnitude of SE

3 Life cycle model: extension of two-period models to working life and retirement
phases with many periods.

Life cycle profiles in the data
1 Some support for consumption smoothing

2 Asset profiles look very different from predictions of our (simple) life cycle model
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Outline for today

1 Uncertainty
Random variables
Mean and variance

2 Risk aversion
Certainty equivalent and risk premium

3 Complete markets
Decentralised economy
Planner’s solution

4 Main takeaways
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Uncertainty



Uncertainty in economics

So far, all our models were deterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministic: households knew all realisations of income and
returns in advance.

Give examples of economically relevant uncertainty!
■ Labour earnings

■ Unemployment

■ Investment returns (e.g., stock returns)

■ Survival

■ Health state

■ Divorce / separation
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Uncertainty in economic models

Deterministic household problem

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2

𝑦2 — Deterministic income

𝑟 — Deterministic asset return

Stochastic household problem

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽 E
[
𝑢 (𝑐2)

]
s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟2)𝑎2 + 𝑦2

𝑦2 — Uncertain income

𝑟2 — Uncertain asset return

With incomplete markets, uncertainty creates ex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneityex post heterogeneity:
■ some individuals had good, others bad draws
■ even true if everyone was identical ex ante
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How do we model uncertainty?

■ Terminology
In this course: uncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertaintyuncertainty and riskriskriskriskriskriskriskriskriskriskriskriskriskriskriskriskrisk are used as synonyms
Something uncertain is stochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochasticstochastic or randomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandomrandom
Something certain is often called deterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministic

■ Formally modelled as a random variable
Well-defined framework to quantify uncertain events
We ignore technical details, focus on simplest form of uncertainty

■ Agents are perfectly informed about the true process generating uncertainty
(rational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectationsrational expectations)

Parameters governing this process influence household choices
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Common distributions used in macroeconomics

Continuous random variables
■ NormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormalNormal (Gaussian): 𝑋 ∼ N(𝜇, 𝜎2)

Used for: asset returns
Expected value of function 𝑓 (𝑋 ):

E
[
𝑓 (𝑋 )

]
=

1
√
2𝜋𝜎

∫ ∞

−∞
𝑓 (𝑥)𝑒− 1

2 ( 𝑥−𝜇
𝜎 )2𝑑𝑥

■ Log-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normalLog-normal: log𝑋 ∼ N(𝜇, 𝜎2)
Used for: labour earnings, asset returns
Expected value of function 𝑓 (𝑋 ):

E
[
𝑓 (𝑋 )

]
=

1
√
2𝜋𝜎

∫ ∞

0

𝑓 (𝑥)
𝑥

𝑒
− 1

2

(
log(𝑥 )−𝜇

𝜎

)2
𝑑𝑥

■ ParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoParetoPareto
Used for: firm productivity, top incomes

Discrete random variables
■ BernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulliBernoulli

Outcome either 0 or 1; 1
occurs with probability 𝜋
User for: exogenous
unemployment shocks

■ Generalised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised BernoulliGeneralised Bernoulli
Extended to multiple
outcomes
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Common continuous distributions
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(b) Log-normal

Figure 1: Probability density functions for normal and log-normal distributions
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Income as a discrete random variable

■ We focus on labour income as source of
uncertainty

■ Assume income 𝑦𝑡+1 is a random
variable with two possible realisations:
𝑦𝑏 “bad”
𝑦𝑔 “good”

𝑦𝑡+1 =

{
𝑦𝑏 with probability 𝜋

𝑦𝑔 with probability 1 − 𝜋
yb yg

yt + 1

0

1

Pr
ob

ab
ili

ty
 (P

M
F)

M
ea

n

Figure 2: Discrete random variable with possible
realisations (𝑦𝑏 , 𝑦𝑔)
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Mean and variance

Distributions are characterised by so-called momentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmomentsmoments:

1 MeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMeanMean (or expected value): 1st moment

2 VarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVarianceVariance: 2nd (central) moment

Mean of discrete random variable
■ Weighted sum of all possible realisations

■ Weights are given by realisation probabilities Pr (𝑦𝑡+1 = 𝑦𝑖 )
E𝑡𝑦𝑡+1 = 𝑦𝑏 · Pr (𝑦𝑡+1 = 𝑦𝑏 ) + 𝑦𝑔 · Pr

(
𝑦𝑡+1 = 𝑦𝑔

)
= 𝑦𝑏𝜋 + 𝑦𝑔 (1 − 𝜋)
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Mean and variance

Variance of discrete random variable
■ Measure of dispersion around the mean

Standard deviation =
√
Variance

■ Defined as Var (𝑦𝑡+1 ) = E𝑡𝑦2𝑡+1 − (E𝑡𝑦𝑡+1)2 = E𝑡
[
(𝑦𝑡+1 − E𝑡𝑦𝑡+1)2

]
■ For our two-state income process:

Var (𝑦𝑡+1 ) = 𝑦2
𝑏
𝜋 + 𝑦2𝑔 (1 − 𝜋)︸              ︷︷              ︸

E𝑡 𝑦2𝑡+1

−
[
𝑦𝑏𝜋 + 𝑦𝑔 (1 − 𝜋)

]2︸                  ︷︷                  ︸
(E𝑡 𝑦𝑡+1 )2

...

= 𝜋 (1 − 𝜋)
[
𝑦𝑏 − 𝑦𝑔

]2
Intuition?

Variance increasing in distance |𝑦𝑔 − 𝑦𝑏 | (outcomes are more dispersed)
Variance maximised at 𝜋 = 1

2 (both outcomes equally likely)
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Example: symmetric income risk

Symmetric income risk

Income given by

𝑦𝑡+1 =

{
𝑦−𝜖 with prob. 1

2
𝑦+𝜖 with prob. 1

2

for some fixed 𝜖 with 0 < 𝜖 < 𝑦.

Moments:

E𝑡𝑦𝑡+1 =
1
2
(𝑦 − 𝜖) + 1

2
(𝑦 + 𝜖) = 𝑦

Var (𝑦𝑡+1 ) = 𝜖2

Mean-preserving spread

Income given by

𝑦𝑡+1 =

{
𝑦−2𝜖 with prob. 1

2
𝑦+2𝜖 with prob. 1

2

where 𝜖 is unchanged from before.

Moments:

E𝑡𝑦𝑡+1 = 𝑦

Var (𝑦𝑡+1 ) = 4𝜖2
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Mean-preserving spread

Mean-preserving spreads leaves mean unchanged, but quadruples variance (in this
example).
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Figure 3:Mean-preserving spread from state space (𝑦 − 𝜖,𝑦 + 𝜖) to (𝑦 − 2𝜖,𝑦 + 2𝜖)
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Risk aversion



Recall from unit 1: CRRA preferences

■ Utility function given by

𝑢 (𝑐) =
{
𝑐1−𝛾 −1
1−𝛾 if 𝛾 ≠ 1

log(𝑐) if 𝛾 = 1

■ Parameter 𝛾 is called the coefficient of
relative risk aversion (RRA)

■ Unit 2: We showed that EIS = 1
𝛾

■ As name implies, RRA is also related to
risk aversion

𝛾 = Arrow-Pratt coefficient of relative
risk aversion.

■ With CRRA, two very different
concepts are mapped into single
parameter!

0 1 2 3 4 5
Consumption

4

3

2

1

0

1

2

U
til

ity

u(c) = c1 1
1

= 0.5
= 1.0
= 1.5

Figure 4: CRRA utility for different values of the
relative risk aversion parameter 𝛾
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Quantifying risk aversion

■ Magnitude of RRA parameter: higher 𝛾 =⇒ more risk averse

■ Certainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalentCertainty equivalent: higher CE =⇒ more risk averse

■ Risk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premiumRisk premium: higher risk premium =⇒ more risk averse

Example:
■ Static setting with stochastic consumption (gamble):

𝑐 =

{
𝑐𝑏 with prob. 𝜋

𝑐𝑔 with prob. 1 − 𝜋

■ For illustration, let 𝜋 = 1
2

■ CRRA utility function 𝑢 (𝑐)
■ Expected utility:

E𝑢 (𝑐) = 1
2
𝑢 (𝑐𝑏) +

1
2
𝑢 (𝑐𝑔)
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Certainty equivalent and risk premium

Certainty equivalent
■ Suppose individual could avoid gamble and get certaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertaincertain outcome 𝐶𝐸 instead

What is the lowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowestlowest acceptable certain amount?
■ 𝐶𝐸 must satisfy

𝑢 (𝐶𝐸) = E𝑢 (𝑐)
■ For risk-averse individual with strictly concave 𝑢 (•):

𝑢 (𝐶𝐸) = E𝑢 (𝑐) < 𝑢 (E𝑐)︸            ︷︷            ︸
Jensen’s inequality

=⇒ 𝐶𝐸 < E𝑐

Risk premium
■ Difference between expected outcome and CE: 𝑝 = E𝑐 −𝐶𝐸

Intuition?
■ Risk-averse individual dislikes gambles, accepts lower certain amount
■ Risk-averse individual is willing to forfeit 𝑝 in expectation
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Certainty equivalent and risk premium

Graphical illustration of previous example:

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)

u(E[c])

= 2

Figure 5: Certainty equivalent for individual with relative risk aversion 𝛾 = 2.
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Certainty equivalent and risk premium

With CRRA, RRA parameter 𝛾 affects CE and risk premium!

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)
u(E[c])

= 1

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)

u(E[c])

= 2

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)
u(E[c])

= 1

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)

u(E[c])

= 2

Figure 6: Certainty equivalent for RRA = 1 (left) and RRA = 2 (right)
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Complete markets:
Decentralised economy



Complete markets: environment

■ Simplest setup: two periods, two
possible states in period 2

■ Household income in 𝑡 = 2 depends on
𝑠2: good or bad realisation

t = 1 t = 2

State s1 State s2

s2 = g

s2 = b

Figure 7: Event tree for two periods with uncertainty
about state 𝑠2 in the second period

■ In 𝑡 = 1, households trade contingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingentcontingent
bonds labelled 𝑏 and 𝑔:

payoff𝑏 (𝑠2) =
{
1 if 𝑠2 = 𝑏

0 if 𝑠2 = 𝑔

payoff𝑔 (𝑠2) =
{
0 if 𝑠2 = 𝑏

1 if 𝑠2 = 𝑔

■ Each bond delivers one unit of
consumption in one particular state

■ Bond prices: 𝑞𝑏 , 𝑞𝑔
■ Such bonds are called Arrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securitiesArrow securities
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Household problem
Complete markets: decentralised economy

Household maximises expected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utilityexpected utility:

max
𝑐1, 𝑐2𝑏 , 𝑐2𝑔, 𝑎𝑏 , 𝑎𝑔

𝑢 (𝑐1) + 𝛽

[
𝜋𝑢 (𝑐2𝑏) + (1 − 𝜋)𝑢 (𝑐2𝑔)

]
︸                            ︷︷                            ︸

≡E𝑢 (𝑐2 )

(1)

s.t. 𝑐1 + 𝑞𝑏𝑎𝑏 + 𝑞𝑔𝑎𝑔 = 𝑦1 (2)

𝑐2𝑏 = 𝑎𝑏 + 𝑦2𝑏 (3)

𝑐2𝑔 = 𝑎𝑔 + 𝑦2𝑔 (4)

𝑎𝑏 : Number of Arrow bonds purchased for state 𝑏 at price 𝑞𝑏
𝑎𝑔: Number of Arrow bonds purchased for state 𝑔 at price 𝑞𝑔
𝑦2: Period 2 income

𝑦2 =

{
𝑦2𝑏 with prob. 𝜋

𝑦2𝑔 with prob. 1 − 𝜋
(5)
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Solving the problem: lifetime budget constraint
Complete markets: decentralised economy

As usual, insert budget constraints (3), (4) into (2):

𝑐1 + 𝑞𝑏𝑐2𝑏 + 𝑞𝑔𝑐2𝑔︸                ︷︷                ︸
Value of LT cons.

= 𝑦1 + 𝑞𝑏𝑦2𝑏 + 𝑞𝑔𝑦2𝑔︸                ︷︷                ︸
Value of LT inc.

(6)

Alternative interpretation with complete markets:
■ Income in period 2:

HH sells 𝑦2𝑏 Arrow bonds 𝑏 for unit price 𝑞𝑏
HH sells 𝑦2𝑔 Arrow bonds 𝑔 for unit price 𝑞𝑔

■ Consumption in period 2:
HH purchases 𝑐2𝑏 Arrow bonds 𝑏 for unit price 𝑞𝑏
HH purchases 𝑐2𝑔 Arrow bonds 𝑔 for unit price 𝑞𝑔

■ Period 1 income/consumption: price normalised to 1

HH sells entire lifetime income, purchases entire lifetime consumption in 𝑡 = 1.

19 / 36



Solving the problem: optimality conditions
Complete markets: decentralised economy

1 Lagrangian:

L = 𝑢 (𝑐1) + 𝛽

[
𝜋𝑢 (𝑐2𝑏) + (1 − 𝜋)𝑢 (𝑐2𝑔)

]
+ 𝜆

[
𝑦1 + 𝑞𝑏𝑦2𝑏 + 𝑞𝑔𝑦2𝑔 − 𝑐1 − 𝑞𝑏𝑐2𝑏 − 𝑞𝑔𝑐2𝑔

]
2 First-order conditions:

𝜕L
𝜕𝑐1

= 𝑢′(𝑐1) − 𝜆 = 0 (7)

𝜕L
𝜕𝑐2𝑏

= 𝛽𝜋𝑢′(𝑐2𝑏) − 𝜆𝑞𝑏 = 0 (8)

𝜕L
𝜕𝑐2𝑔

= 𝛽 (1 − 𝜋)𝑢′(𝑐2𝑔) − 𝜆𝑞𝑔 = 0 (9)

3 EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏EE for Arrow bond 𝑏: (7) + (8)

𝑢′(𝑐1)𝑞𝑏 = 𝛽𝜋𝑢′(𝑐2𝑏) (10)

4 EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔EE for Arrow bond 𝑔: (7) + (9)

𝑢′(𝑐1)𝑞𝑔 = 𝛽 (1 − 𝜋)𝑢′(𝑐2𝑔) (11)
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General equilibrium



Solving for prices
Complete markets: decentralised economy

Two possible solution methods
1 Find optimal consumption rules, ensure market clearing

Which markets are operational in this economy?
1 Market for consumption in period 1
2 Market for consumption in period 2, bad state
3 Market for consumption in period 2, good state

Can be very tedious, even with log preferences.

2 Use FOCs to determine equilibrium prices — we use this method!

Assumptions
■ Two states in 𝑡 = 2: 𝑠 = 𝑏,𝑔

■ Two households 𝑖 = 𝐴, 𝐵 with income 𝑦𝑖𝑡𝑠 in period 𝑡 , state 𝑠

■ Aggregate endowments: 𝑌1 = 𝑦𝐴1 + 𝑦𝐵1 , 𝑌2𝑏 = 𝑦𝐴2𝑏 + 𝑦
𝐵
2𝑏 , 𝑌2𝑔 = 𝑦𝐴2𝑔 + 𝑦𝐵2𝑔
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Solving for general equilibrium
Complete markets: decentralised economy

1 FOCs (7), (8) and (9) for CRRA
preferences for 𝑖 = 𝐴, 𝐵:(

𝑐𝑖1
)−𝛾

= 𝜆𝑖

𝛽𝜋
(
𝑐𝑖2𝑏

)−𝛾
= 𝜆𝑖𝑞𝑏

𝛽 (1 − 𝜋)
(
𝑐𝑖2𝑔

)−𝛾
= 𝜆𝑖𝑞𝑔

2 Divide 𝐴’s by 𝐵’s FOCs:(
𝑐𝐴1

)−𝛾(
𝑐𝐵1

)−𝛾 =
𝜆𝐴

𝜆𝐵

𝛽𝜋

(
𝑐𝐴2𝑏

)−𝛾
𝛽𝜋

(
𝑐𝐵2𝑏

)−𝛾 =
𝜆𝐴𝑞𝑏

𝜆𝐵𝑞𝑏

𝛽 (1 − 𝜋)
(
𝑐𝐴2𝑔

)−𝛾
𝛽 (1 − 𝜋)

(
𝑐𝐵2𝑔

)−𝛾 =
𝜆𝐴𝑞𝑔

𝜆𝐵𝑞𝑔

3 Cancel common terms: (
𝑐𝐴1

𝑐𝐵1

)−𝛾
=

(
𝑐𝐴2𝑏

𝑐𝐵2𝑏

)−𝛾
=

(
𝑐𝐴2𝑔

𝑐𝐵2𝑔

)−𝛾
=
𝜆𝐴

𝜆𝐵
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Solving for general equilibrium
Complete markets: decentralised economy

Summary of findings
■ Ratio of 𝐴’s to 𝐵’s consumption is

𝑐𝐴1

𝑐𝐵1
=
𝑐𝐴2𝑏

𝑐𝐵2𝑏
=
𝑐𝐴2𝑔

𝑐𝐵2𝑔
=

(
𝜆𝐴

𝜆𝐵

)− 1
𝛾

(12)

in all periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all statesall periods and all states!

■ Implies that 𝐴’s consumption is some constantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstant fraction 𝛼 of aggregate output
(analogous for 𝐵):

𝑐𝐴1 = 𝛼

(
𝑦𝐴1 + 𝑦𝐵1

)
︸     ︷︷     ︸

≡𝑌1

, 𝑐𝐴2𝑏 = 𝛼

(
𝑦𝐴2𝑏 + 𝑦

𝐵
2𝑏

)
︸       ︷︷       ︸

≡𝑌2𝑏

, 𝑐𝐴2𝑔 = 𝛼

(
𝑦𝐴2𝑔 + 𝑦𝐵2𝑔

)
︸       ︷︷       ︸

≡𝑌2𝑔

(13)

How does 𝐴’s consumption depend on 𝐴’s income?
■ With complete markets, consumption only depends on aggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregatesaggregates!
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Solving for prices
Complete markets: decentralised economy

We can use this insight to solve for prices. Plug (13) into Euler equations (10) and (11):

■ Arrow bond 𝑏:(
𝑐𝐴1

)−𝛾
𝑞𝑏 = 𝛽𝜋

(
𝑐𝐴2𝑏

)−𝛾
(𝛼𝑌1)−𝛾 𝑞𝑏 = 𝛽𝜋 (𝛼𝑌2𝑏)−𝛾

=⇒ 𝑞𝑏 = 𝛽𝜋

(
𝑌2𝑏

𝑌1

)−𝛾
(14)

■ Arrow bond 𝑔:(
𝑐𝐴1

)−𝛾
𝑞𝑔 = 𝛽 (1 − 𝜋)

(
𝑐𝐴2𝑔

)−𝛾
(𝛼𝑌1)−𝛾 𝑞𝑔 = 𝛽 (1 − 𝜋)

(
𝛼𝑌2𝑔

)−𝛾
=⇒ 𝑞𝑔 = 𝛽 (1 − 𝜋)

(
𝑌2𝑔

𝑌1

)−𝛾
(15)

𝛼 cancels out, prices depend only on aggregates 𝑌1, 𝑌2𝑏 and 𝑌2𝑔, and parameters.

Intuition? How do prices depend on aggregate income and parameters?
■ Price is higher if state is more likely to occur

■ Price is lower if aggregate income in that state is high
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Example:
Household problem with log preferences



Solving the problem: Euler equations
Complete markets, log preferences

■ Assume both HH have log preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferenceslog preferences (we omit household index 𝑖)
■ Euler equations from (10) and (11):

1
𝑐1
𝑞𝑏 = 𝛽𝜋

1
𝑐2𝑏

=⇒ 𝑐2𝑏 = 𝛽𝜋
1
𝑞𝑏

𝑐1 (16)

1
𝑐1
𝑞𝑔 = 𝛽 (1 − 𝜋) 1

𝑐2𝑔
=⇒ 𝑐2𝑔 = 𝛽 (1 − 𝜋) 1

𝑞𝑔
𝑐1 (17)

■ Denote lifetime income as 𝑦 ≡ 𝑦1 + 𝑞𝑏𝑦2𝑏 + 𝑞𝑔𝑦2𝑔
■ Plug (16) + (17) into LTBC (6), solve for 𝑐1:

𝑐1 + 𝑞𝑏𝑐2𝑏 + 𝑞𝑔𝑐2𝑔 = 𝑦

𝑐1 + 𝑞𝑏 𝛽𝜋
1
𝑞𝑏

𝑐1︸  ︷︷  ︸
=𝑐2𝑏

+𝑞𝑔 𝛽 (1 − 𝜋) 1
𝑞𝑔
𝑐1︸          ︷︷          ︸

=𝑐2𝑔

= 𝑦

𝑐1

[
1 + 𝛽𝜋 + 𝛽 (1 − 𝜋)

]
= 𝑦 =⇒ 𝑐1 =

1
1 + 𝛽

𝑦 (18)
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Solving the problem: optimal solution
Complete markets, log preferences

Use (16), (17) and (18) to find optimal consumption in all periods/states:

𝑐1 =
1

1 + 𝛽
𝑦 (19)

𝑐2𝑏 = 𝛽𝜋
1
𝑞𝑏

𝑐1 =
𝛽

1 + 𝛽

𝜋

𝑞𝑏
𝑦 (20)

𝑐2𝑔 = 𝛽 (1 − 𝜋) 1
𝑞𝑔
𝑐1 =

𝛽

1 + 𝛽

1 − 𝜋

𝑞𝑔
𝑦 (21)

Looks almost like solution without uncertainty!

Why?
■ Household insured against allallallallallallallallallallallallallallallallall idiosyncratic risk

■ Irrelevant for consumption whether household turned out to be lucky ex post
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Example:
Symmetric shocks & constant aggregate endowment



Example: Symmetric (negatively correlated) income risk
Complete markets, log preferences, symmetric shocks

■ Continue with previous example
■ Remaining object to pin down is 𝑦 — need assumptions on individual income!
■ Period-2 income:

Household 𝐴:

𝑦𝐴2 =

{
𝑦𝐴2𝑏 = 𝑦2 − 𝜖 with prob. 𝜋
𝑦𝐴2𝑔 = 𝑦2 + 𝜖 with prob. 1 − 𝜋

where 0 < 𝜖 < 𝑦2

Household 𝐵’s income realisations are flipped

■ Income distribution and aggregates:

Household Income in 𝑡 = 1 Income in 𝑡 = 2

State 𝑏 (prob. 𝜋 ) State 𝑔 (prob. 1 − 𝜋 )

𝐴 𝑦1 𝑦2 − 𝜖 𝑦2 + 𝜖

𝐵 𝑦1 𝑦2 + 𝜖 𝑦2 − 𝜖

Aggregate 𝑌1 = 2𝑦1 𝑌2 = 2𝑦2 𝑌2 = 2𝑦2

Table 1: State-dependent income distribution
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Value of lifetime income
Complete markets, log preferences, symmetric shocks

1 With log preferences and constant
𝑌2𝑏 = 𝑌2𝑔 = 𝑌2, prices (14) and (15) are

𝑞𝑏 = 𝛽𝜋
𝑌1

𝑌2

𝑞𝑔 = 𝛽 (1 − 𝜋)𝑌1
𝑌2

2 Lifetime income for 𝑖 = 𝐴, 𝐵:

𝑦𝑖 = 𝑦1 + 𝑞𝑏𝑦𝑖2𝑏 + 𝑞𝑔𝑦
𝑖
2𝑔

= 𝑦1 + 𝛽𝜋
𝑌1

𝑌2
𝑦𝑖2𝑏 + 𝛽 (1 − 𝜋)𝑌1

𝑌2
𝑦𝑖2𝑔

= 𝑦1 + 𝛽
𝑌1

𝑌2

[
𝜋𝑦𝑖2𝑏 + (1 − 𝜋)𝑦𝑖2𝑔

]
︸                   ︷︷                   ︸

E𝑦𝑖2𝑠

3 Assume 𝜋 = 1
2 :

E𝑦𝐴2𝑠 =
1
2
(𝑦2 − 𝜖) + 1

2
(𝑦2 + 𝜖) = 𝑦2

E𝑦𝐵2𝑠 =
1
2
(𝑦2 + 𝜖) + 1

2
(𝑦2 − 𝜖) = 𝑦2

4 Lifetime income simplifies:

𝑦𝑖 = 𝑦1 + 𝛽
𝑌1

𝑌2
𝑦2

=
𝑌1

2
+ 𝛽

𝑌1

𝑌2

𝑌2

2

= (1 + 𝛽) 1
2
𝑌1

since 𝑌1 = 2𝑦1, 𝑌2 = 2𝑦2
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Optimal consumption
Complete markets, log preferences, symmetric shocks

■ Optimal consumption: plug lifetime income and prices into (19), (20) and (21):

𝑐𝑖1 =
1

1 + 𝛽
𝑦𝑖 =

1
1 + 𝛽

(1 + 𝛽) 1
2
𝑌1 =

1
2
𝑌1

𝑐𝑖2𝑏 =
𝛽

1 + 𝛽

𝜋

𝑞𝑏
𝑦𝑖 =

1
1 + 𝛽

𝑌2

𝑌1
𝑦𝑖 =

1
1 + 𝛽

𝑌2

𝑌1
(1 + 𝛽) 1

2
𝑌1 =

1
2
𝑌2

𝑐𝑖2𝑔 =
𝛽

1 + 𝛽

1 − 𝜋

𝑞𝑔
𝑦𝑖 =

1
1 + 𝛽

𝑌2

𝑌1
𝑦𝑖 =

1
1 + 𝛽

𝑌2

𝑌1
(1 + 𝛽) 1

2
𝑌1 =

1
2
𝑌2

■ Households are ex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identicalex ante identical =⇒ consume exactly the same amount ex post

■ Individual shock realisations do not matter (perfect insurance)
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Equilibrium prices
Complete markets, log preferences, symmetric shocks

Using (14) and (15), we find equilibrium prices for Arrow bonds:

𝑞𝑏 = 𝛽𝜋

(
𝑌2𝑏

𝑌1

)−𝛾
= 𝛽

1
2
𝑌1

𝑌2

𝑞𝑔 = 𝛽 (1 − 𝜋)
(
𝑌2𝑔

𝑌1

)−𝛾
= 𝛽

1
2
𝑌1

𝑌2

Because aggregate endowment and realisation probabilities are the same in both states,
Arrow bond prices are identical.

What is the price of a risk-free bond in this economy?
■ Create risk-free bond by purchasing one of each Arrow security
■ Price of risk-free bond:

𝑞 = 𝑞𝑏 + 𝑞𝑔 = 𝛽
1
2
𝑌1

𝑌2
+ 𝛽

1
2
𝑌1

𝑌2
= 𝛽

𝑌1

𝑌2

■ Risk-free interest rate:
(1 + 𝑟 ) = 1

𝑞
= 𝛽−1

𝑌2

𝑌1
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Planner’s solution (centralised economy)



Social planner problem

Recall first fundamental theorem of welfare economics:

Definition (First welfare theorem)

Loosely speaking, a decentralised equilibrium with

■ complete markets

■ complete information

■ perfect competition

is Pareto optimal.

■ All of these criteria are satisfied in our setting

■ Can solve planner’s problem instead of decentralised equilibrium

■ Caveat: need to know planner’s Pareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weightsPareto weights for each household
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Social planner problem

■ Assume two households 𝐴 and 𝐵 with risky endowments
HH income allowed to depend on states 𝑏 and 𝑔 (no other restrictions imposed)

■ Planner attaches Pareto weight 𝜃𝑖 to household 𝑖

■ Planner directly allocates consumption, no savings (Arrow bonds) needed

Planner solves:

max(
𝑐𝑖1, 𝑐

𝑖
2𝑏 , 𝑐

𝑖
2𝑔

)
𝑖=𝐴,𝐵

∑︁
𝑖=𝐴,𝐵

𝜃𝑖

{
𝑢 (𝑐𝑖1) + 𝛽

[
𝜋𝑢

(
𝑐𝑖2𝑏

)
+ (1 − 𝜋)𝑢

(
𝑐𝑖2𝑔

)]}
(22)

s.t.
∑︁
𝑖=𝐴,𝐵

𝑐𝑖1 = 𝑌1 (23)∑︁
𝑖=𝐴,𝐵

𝑐𝑖2𝑏 = 𝑌2𝑏 (24)∑︁
𝑖=𝐴,𝐵

𝑐𝑖2𝑔 = 𝑌2𝑔 (25)
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Solving the planner’s problem

■ Lagrangian:

L =
∑︁
𝑖=𝐴,𝐵

𝜃𝑖

{
𝑢 (𝑐𝑖1) + 𝛽

[
𝜋𝑢

(
𝑐𝑖2𝑏

)
+ (1 − 𝜋)𝑢

(
𝑐𝑖2𝑔

)]}
+ 𝜆1

[
𝑌1 −

∑︁
𝑖=𝐴,𝐵

𝑐𝑖1

]
+ 𝜆𝑏

[
𝑌2𝑏 −

∑︁
𝑖=𝐴,𝐵

𝑐𝑖2𝑏

]
+ 𝜆𝑔

[
𝑌2𝑔 −

∑︁
𝑖=𝐴,𝐵

𝑐𝑖2𝑔

]
■ First-order conditions:

𝜕L
𝜕𝑐𝑖1

= 𝜃𝑖𝑢
′(𝑐𝑖1) − 𝜆1 = 0 (26)

𝜕L
𝜕𝑐𝑖2𝑏

= 𝜃𝑖𝛽𝑢
′(𝑐𝑖2𝑏) − 𝜆𝑏 = 0 (27)

𝜕L
𝜕𝑐𝑖2𝑔

= 𝜃𝑖𝛽𝑢
′(𝑐𝑖2𝑔) − 𝜆𝑔 = 0 (28)
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Solving the planner’s problem

■ Lagrange multipliers 𝜆1, 𝜆𝑏 and 𝜆𝑔 identical for all households:

𝜃𝐴𝑢
′(𝑐𝐴1 ) = 𝜆1

𝜃𝐵𝑢
′(𝑐𝐵1 ) = 𝜆1

}
=⇒

𝑢′(𝑐𝐴1 )
𝑢′(𝑐𝐵1 )

=
𝜃𝐵

𝜃𝐴

Intuition? How does marg. utility depend on Pareto weights?
■ Impose CRRA preferences:(

𝑐𝐴1
)−𝛾(

𝑐𝐵1
)−𝛾 =

𝜃𝐵

𝜃𝐴
=⇒

𝑐𝐴1

𝑐𝐵1
=

(
𝜃𝐵

𝜃𝐴

)− 1
𝛾

(29)

■ From (27) and (28):
𝑐𝐴2𝑏

𝑐𝐵2𝑏
=
𝑐𝐴2𝑔

𝑐𝐵2𝑔
=

(
𝜃𝐵

𝜃𝐴

)− 1
𝛾

(30)

■ As in decentralised economy, relative consumption is constantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstantconstant across all
periods/states!
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Solving the planner’s problem: equilibrium allocation

■ Consumption at time 𝑡 = 1, 2 in state 𝑠 = 𝑏,𝑔 for household 𝐴 (analogous for 𝐵)
follows from aggregate resource constraints (23), (24), (25) and optimality condition
(29) or (30):

𝑐𝐴𝑡𝑠 + 𝑐𝐵𝑡𝑠 = 𝑌𝑡𝑠

𝑐𝐴𝑡𝑠 + (𝜃𝐵/𝜃𝐴)
1
𝛾 𝑐𝐴𝑡𝑠︸         ︷︷         ︸

=𝑐𝐵𝑡𝑠

= 𝑌𝑡𝑠

𝑐𝐴𝑡𝑠

[
1 + (𝜃𝐵/𝜃𝐴)

1
𝛾

]
= 𝑌𝑡𝑠

=⇒ 𝑐𝐴𝑡𝑠 =
1

1 + (𝜃𝐵/𝜃𝐴)
1
𝛾

𝑌𝑠𝑡

■ Higher relative weight 𝜃𝐴/𝜃𝐵 results in higher allocation to 𝐴
■ What determines Pareto weights?

From (12) we see that 𝜃𝑖 = 𝜆−1𝑖 where 𝜆𝑖 is 𝑖’s Lagrange multiplier on LTBC
Intuition: HH with higher lifetime wealth is assigned higher weight to replicate the
decentralised allocation
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Main takeaways from this unit



Main takeaways

Uncertainty & risk aversion

1 Uncertainty is governed by the variance of income, returns, etc.

2 More risk-averse agents demand higher certainty equivalent, i.e., accept smaller
certain amount to avoid gamble

3 More risk-averse agents demand higher risk premium
4 Risk aversion is connected to curvature of utility function

For CRRA preferences, curvature is governed by 𝛾 , which is the Arrow-Pratt coefficient
of relative risk aversion

Complete markets
1 Allow households to perfectly insure against idiosyncratic risk

2 Household’s allocation & welfare are independent of ex post shock realisations

3 Allocations are Pareto optimal, so decentralised equilibrium is identical to planner’s
solution with appropriate Pareto weights
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Outline for today

1 Complete vs. incomplete markets

2 Two-period problem with incomplete markets

3 Certainty equivalence model
Quadratic preferences
Deterministic model
Stochastic model

4 Precautionary savings model

5 Main takeaways

1 / 33



Complete vs. incomplete markets



Uncertainty in economic models

Two-period HH problem in deterministic vs. stochastic setting:

No uncertainty

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2

𝑦2 — Deterministic income

Complete markets

max
𝑐1, {𝑐2𝑠 }𝑠

𝑢 (𝑐1) + 𝛽E𝑢 (𝑐2)

s.t. 𝑐1 +
∑︁
𝑠

𝑞𝑠𝑐2𝑠 =

𝑦1 +
∑︁
𝑠

𝑞𝑠𝑦2𝑠

𝑦2 — Uncertain income

Incomplete markets

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽E𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2
𝑎2 ≥ −𝑏

𝑦2 — Uncertain income

𝑏 — Borrowing limit
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Complete vs. incomplete markets

Complete markets
1 Households can insure against allallallallallallallallallallallallallallallallall

idiosyncratic risk

2 Allocations depend on ex ante lifetime
wealth, not on ex post realisations

3 Consumption smoothing across timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross time
and statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand statesand states

4 Perfect aggregation, admits RA
formulation even with uncertainty

Incomplete markets
1 Limited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited accessLimited access to contingent assets

(e.g., only risk-free bond)

2 Ex post consumption may depend on
idiosyncratic shock realisations

3 Consumption smoothing across timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross timeacross time,
limited smoothing across states

4 Usually does not aggregate
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Two-period problem with incomplete markets



Two-period problem with incomplete markets

Household problem for generic 𝑢 (•)

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽E𝑢 (𝑐2) (1)

s.t. 𝑐1 + 𝑎2 = 𝑦1 (2)

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2 (3)

𝑎2 ≥ −𝑏 , 𝑏 ≡ 𝑦𝑚𝑖𝑛

1 + 𝑟 (4)

where

𝑎2 Savings in risk-free bond (notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot state contingent)

𝑦2 Stochastic period-2 income

𝑦𝑚𝑖𝑛 Lowest possible realisation of 𝑦2, 𝑦𝑚𝑖𝑛 ≥ 0
𝑏 Natural borrowing limit (HH can repay with certainty)
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Solving the household problem
Two-period problem with incomplete markets

Transform to problem with single choice variable 𝑎2 and derive the Euler equation:

1 Eliminate 𝑐1, 𝑐2:

max
𝑎2

𝑢 (𝑦1 − 𝑎2) + 𝛽E
[
𝑢
(
(1 + 𝑟 )𝑎2 + 𝑦2

) ]
s.t. 𝑎2 ≥ −𝑦𝑚𝑖𝑛

1 + 𝑟
2 Lagrangian:

L = 𝑢 (𝑦1−𝑎2)+𝛽E
[
𝑢
(
(1 + 𝑟 )𝑎2 + 𝑦2

) ]
+ 𝜆

[
𝑎2 +

𝑦𝑚𝑖𝑛

1 + 𝑟

]

3 First-order condition for 𝑎2:

𝜕L
𝜕𝑎2

= −𝑢′(𝑦1 − 𝑎2)

+ 𝛽 (1 + 𝑟 )E
[
𝑢′ ((1 + 𝑟 )𝑎2 + 𝑦2) ] + 𝜆 = 0

4 Euler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equationEuler equation (assuming 𝜆 = 0):

𝑢′(𝑦1 − 𝑎2︸ ︷︷ ︸
𝑐1

) = 𝛽 (1 + 𝑟 )E𝑢′ ((1 + 𝑟 )𝑎2 + 𝑦2︸           ︷︷           ︸
𝑐2

)
(5)

Almost identical to deterministic case except for
expectation.
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Quadratic preferences



Quadratic preferences

Solving (5) is difficult. One possible simplification: quadratic utility function

Utility function

𝑢 (𝑐) = 𝛼𝑐 − 𝛿

2
𝑐2 𝛼 > 0 , 𝛿 > 0 (6)

Why?
■ Linear marginal utility:

𝑢′(𝑐) = 𝛼 − 𝛿𝑐 (7)

Easy to evaluate expectations!

Why not?
■ Not monotonically increasing (bliss point)

■ lim𝑐→0𝑢 (𝑐) ≠ −∞ (fails Inada condition)

■ RRA increasing in 𝑐

0 c *

Consumption

u *

Quadratic utility A

Figure 1: Quadratic utility function. A shows
the bliss point
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Quadratic preferences: certainty equivalence

■ Quadratic preferences give rise to certainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalencecertainty equivalence
■ Agent with quadratic preferences is still risk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averserisk averse!

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)

u(E[c])

Figure 2: Certainty equivalent (CE) with quadratic preferences. The graph shows a situation in which the
consumer faces a gamble with potential outcomes 𝑐𝑏 and 𝑐𝑔 with equal probability.

7 / 33



Quadratic preferences:
Deterministic model



Quadratic preferences — Deterministic model

■ Solve deterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministicdeterministic model first, compare to stochastic variant later

■ Household problem:

max
𝑐1, 𝑐2, 𝑎2

(
𝛼𝑐1 −

𝛿

2
𝑐21

)
+ 𝛽

(
𝛼𝑐2 −

𝛿

2
𝑐22

)
(8)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2
𝑐1 ≥ 0, 𝑐2 ≥ 0 (9)

Assume that constraints (9) are satisfied.
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Solving the problem
Quadratic preferences — Deterministic model

1 Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = 𝑦1 +
𝑦2

1 + 𝑟 (10)

2 Euler equation as usual:

𝑢′(𝑐1) = 𝛽 (1 + 𝑟 )𝑢′(𝑐2)

3 Use marg. utility from (7):

𝛼 − 𝛿𝑐1 = 𝛽 (1 + 𝑟 )
[
𝛼 − 𝛿𝑐2

]

4 Solve for 𝑐2:

𝑐2 =
𝑐1

𝛽 (1 + 𝑟 ) −
𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
𝛽 (1 + 𝑟 ) (11)

Is (11) plausible?
𝛽 (1 + 𝑟 ) = 1: simplifies to 𝑐2 = 𝑐1
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Solving the problem: optimal consumption/savings
Quadratic preferences — Deterministic model

5 Substitute (11) into LTBC (10):

𝑐1 +
1

1 + 𝑟

[
𝑐1

𝛽 (1 + 𝑟 ) −
𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
𝛽 (1 + 𝑟 )

]
= 𝑦1 +

𝑦2

1 + 𝑟

6 Solve for 𝑐1:

𝑐1 =
𝛽 (1 + 𝑟 )2

1 + 𝛽 (1 + 𝑟 )2
[
𝑦1 +

𝑦2

1 + 𝑟

]
+ 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2 (12)

7 Savings: plug into period-1 budget constraint:

𝑎2 = 𝑦1 − 𝑐1 =
𝑦1 − 𝛽 (1 + 𝑟 )𝑦2
1 + 𝛽 (1 + 𝑟 )2 − 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2 (13)

Solution (12) and (13) hard to understand — Look at simple cases / graphs!
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Simplifications to understand results
Quadratic preferences — Deterministic model

Assume 𝛽 (1 + 𝑟 ) = 1
■ 𝑐1 from (12) simplifies to

𝑐1 =
1 + 𝑟
2 + 𝑟

[
𝑦1 +

𝑦2

1 + 𝑟

]
■ 𝑎2 from (13) simplifies to

𝑎2 =
𝑦1 − 𝑦2

2 + 𝑟

For 𝑦1 = 𝑦2, HH chooses not to save!

Assume 𝛽 = 1, 𝑟 = 0
■ 𝑐1 from (12) simplifies to

𝑐1 =
1
2
[
𝑦1 + 𝑦2

]
■ 𝑎2 from (13) simplifies to

𝑎2 =
1
2
[
𝑦1 − 𝑦2

]
For 𝑦1 = 𝑦2, HH chooses not to save!
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Optimal intertemporal allocation
Quadratic preferences — Deterministic model

Parameters: 𝛽 = 1, 𝑦1 = 𝑦2 = 1; utility: 𝛼 = 20, 𝛿 = 2

0 y1
Consumption in t = 1

0

y2

A

(a) 𝑟 = 0%

0 y1 c1
Consumption in t = 1

0

y2

c2

C
on

su
m

pt
io

n 
in

 t
=

2

A

(b) 𝑟 = −10%

0 y1c1
Consumption in t = 1

0

y2

c2

A

(c) 𝑟 = 10%

Figure 3: Intertemporal consumption choice with quadratic preferences and different interest rates. A
depicts the optimal allocation (𝑐1, 𝑐2) and the corresponding indifference curve is represented by
the blue line.
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Quadratic preferences:
Stochastic model

(certainty equivalence)



Quadratic preferences — Stochastic model

Household problem same as (1), but assume quadratic utility

max
𝑐1, 𝑐2, 𝑎2

(
𝛼𝑐1 −

𝛿

2
𝑐21

)
+ 𝛽E

[
𝛼𝑐2 −

𝛿

2
𝑐22

]
s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2
𝑎2 ≥ −𝑏 , 𝑏 ≡ 𝑦𝑚𝑖𝑛

1 + 𝑟

where

𝑎2 Savings in risk-free bond (notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot state contingent)

𝑦2 Stochastic period-2 income

𝑦𝑚𝑖𝑛 Lowest possible realisation of 𝑦2, 𝑦𝑚𝑖𝑛 ≥ 0
𝑏 Natural borrowing limit (HH can repay with certainty)
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Solving the problem: optimality conditions
Quadratic preferences — Stochastic model

■ Euler equation from (5) + (7)

𝛼 − 𝛿𝑐1 = 𝛽 (1 + 𝑟 )E [ 𝛼 − 𝛿𝑐2 ]
= 𝛼𝛽 (1 + 𝑟 ) − 𝛿𝛽 (1 + 𝑟 )E𝑐2 (14)

■ Swap expectations and 𝑓 (•)?

E [ 𝑓 (𝑋 ) ] ?
= 𝑓 (E𝑋 )

■ Works if 𝑓 is linear!

E [ 𝑓 (𝑋 ) ] = 𝑓 (E𝑋 )

■ Apply to quadratic marg. utility (7):

E [𝑢′(𝑐2) ] = 𝑢′ (E𝑐2) = 𝛼 − 𝛿E𝑐2

■ Does notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot work with CRRA:

E
[
𝑐
−𝛾
2

]
≠
(
E𝑐2

)−𝛾
14 / 33



Marginal utility: quadratic vs. CRRA preferences

cb cgE[c]
Consumption

u′(cb)

u′(cg)

u′(E[c]) = E[u′(c)]

(a)Quadratic utility, 𝑢′ (𝑐 ) = 𝛼 − 𝛿𝑐

cb cgE[c]
Consumption

u′(cb)

u′(cg)
u′(E[c])

E[u′(c)]

(b) Log utility, 𝑢′ (𝑐 ) = 1/𝑐

Figure 4: Marginal utility for quadratic vs. CRRA preferences. The graph shows a situation in which the
consumer faces a gamble with potential outcomes 𝑐𝑏 and 𝑐𝑔 with equal probability.
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Solving the problem: optimality conditions
Quadratic preferences — Stochastic model

Find optimal savings level:

2 Plug budget constraints into EE in (14):

𝛼 − 𝛿 (𝑦1 − 𝑎2) = 𝛼𝛽 (1 + 𝑟 ) − 𝛿𝛽 (1 + 𝑟 )E
[
(1 + 𝑟 )𝑎2 + 𝑦2

]
3 Pull 𝑎2 out of expectations:

𝛼 − 𝛿𝑦1 + 𝛿𝑎2 = 𝛼𝛽 (1 + 𝑟 ) − 𝛿𝛽 (1 + 𝑟 )2𝑎2 − 𝛿𝛽 (1 + 𝑟 )E𝑦2

4 Solve for 𝑎2:

𝑎2 =
𝑦1 − 𝛽 (1 + 𝑟 )E𝑦2
1 + 𝛽 (1 + 𝑟 )2 − 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2 (15)

5 Use budget constraint, solve for 𝑐1:

𝑐1 = 𝑦1 − 𝑎2 =
𝛽 (1 + 𝑟 )2

1 + 𝛽 (1 + 𝑟 )2

[
𝑦1 +

E𝑦2
1 + 𝑟

]
+ 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2 (16)
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Solution: deterministic vs. stochastic model
Quadratic preferences

Certainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalenceCertainty equivalence: Solutions are identical except for expectations!

Deterministic
Given by (12) and (13):

𝑐1 =
𝛽 (1 + 𝑟 )2

1 + 𝛽 (1 + 𝑟 )2
[
𝑦1 +

𝑦2

1 + 𝑟

]
+ 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2

𝑎2 =
𝑦1 − 𝛽 (1 + 𝑟 )𝑦2
1 + 𝛽 (1 + 𝑟 )2 − 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2

Stochastic
Given by (16) and (15)

𝑐1 =
𝛽 (1 + 𝑟 )2

1 + 𝛽 (1 + 𝑟 )2

[
𝑦1 +

E𝑦2
1 + 𝑟

]
+ 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2

𝑎2 =
𝑦1 − 𝛽 (1 + 𝑟 )E𝑦2
1 + 𝛽 (1 + 𝑟 )2 − 𝛼

𝛿

1 − 𝛽 (1 + 𝑟 )
1 + 𝛽 (1 + 𝑟 )2

What about 𝑐2? Not the same unless realised 𝑦2 = E𝑦2
Which economy would the HH prefer? Deterministic economy (due to risk aversion)
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Example: Response to interest rate changes
Quadratic preferences — Stochastic model

Optimal choices vs. interest rate: consumption (left) and assets (right)

Parameters: 𝛽 = 1, 𝑦1 = E𝑦2 = 1; utility: 𝛼 = 20, 𝛿 = 2

0.10 0.05 0.00 0.05 0.10
Interest rate r

0.6

0.8

1.0

1.2

1.4

C
on

su
m

pt
io

n

c1
Ec2

0.10 0.05 0.00 0.05 0.10
Interest rate r

0.4

0.2

0.0

0.2

0.4

As
se

ts
 a

2
Figure 5: Optional consumption and savings with quadratic utility under uncertainty
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Precautionary savings model



Motivation

■ Risk has no effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effectno effect in certainty equivalence model as long mean is the same

■ Intuitively, higher risk should trigger precautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savings response

■ Empirical evidence for precautionary savings: HH with more volatile income have
higher savings rate

■ Quadratic utility unappealing for other reasons (mentioned earlier), rarely used in
modern macroeconomics or HH finance

Except for some niche applications which we ignore

Need to go back to CRRA preferences to get precautionary savings!

■ Problem: hard to solve analytically
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Household problem with CRRA preferences

Household problem same as (1), but assume CRRA preferences

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽E𝑢 (𝑐2) (17)

s.t. 𝑐1 + 𝑎2 = 𝑦1 (18)

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2 (19)

𝑎2 ≥ −𝑏 , 𝑏 ≡ 𝑦𝑚𝑖𝑛

1 + 𝑟 (20)

𝑦2 stochastic with 𝑦2 ≥ 𝑦𝑚𝑖𝑛

𝑢 (𝑐) =
{
𝑐1−𝛾

1−𝛾 if 𝛾 ≠ 1
log(𝑐) if 𝛾 = 1

where
𝑎2 Savings in risk-free bond (notnotnotnotnotnotnotnotnotnotnotnotnotnotnotnotnot state contingent)
𝑦2 Stochastic period-2 income

𝑦𝑚𝑖𝑛 Lowest possible realisation of 𝑦2, 𝑦𝑚𝑖𝑛 ≥ 0
𝑏 Natural borrowing limit (HH can repay with certainty)
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Solving the household problem
Precautionary savings model

1 Euler equation: (5) with CRRA
marginal utility

𝑐
−𝛾
1 = 𝛽 (1 + 𝑟 )E

[
𝑐
−𝛾
2

]
(21)

■ With CRRA we have:

E
[
𝑐
−𝛾
2

]
≠
(
E𝑐2

)−𝛾
■ Strictly convex marginal utility:

E
[
𝑐
−𝛾
2

]
> (E𝑐2)−𝛾

Follows from Jensen’s inequality
Illustrated in Figure 4b

■ Compared to certainty equivalence, r.h.s. of
EE is larger
Implication for 𝑐1? 𝑐1 ↓
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Solving the household problem
Precautionary savings model

Can we solve the household problem with CRRA preferences and uncertainty?

■ Express Euler equation in terms of savings 𝑎2:

(𝑦1 − 𝑎2)−𝛾 = 𝛽 (1 + 𝑟 )E
[ (
(1 + 𝑟 )𝑎2 + 𝑦2

)−𝛾 ]
Non-linear equation in 𝑎2, no analytical solution!

■ Try the usual remedy: log preferences

1
𝑦1 − 𝑎2

= 𝛽 (1 + 𝑟 )E
[

1
(1 + 𝑟 )𝑎2 + 𝑦2

]
(22)

Still non-linear in 𝑎2, no analytical solution in general!
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Solving the household problem
Precautionary savings model

Solution methods used in the literature
1 Replace terms inside expectations with higher-order Taylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximationTaylor approximation:

Converts non-linear expression to polynomials in random variables.

2 Make assumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distributionassumptions on joint distribution of consumption, asset returns, etc. to get
closed-form solution.

Consumption taken as exogenous — acceptable in finance but not in
macroeconomics!

3 NumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumericalNumerical solution methods

Approach in this unit
Impose sufficiently many simplifying assumptions
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Precautionary savings:
Simple model with analytical solution



Solving the household problem: assumptions
Precautionary savings model

Simplifying assumptions
■ Log preferences (𝛾 = 1), 𝛽 = 1
■ Income: 𝑦1 = E𝑦2 = 𝑦, 𝑦2 with symmetric risk:

𝑦2 =

{
𝑦 − 𝜖 with prob. 1

2
𝑦 + 𝜖 with prob. 1

2
(23)

where 0 < 𝜖 < 𝑦

■ Borrowing limit: 𝑦𝑚𝑖𝑛 = 𝑦 − 𝜖 , so

𝑎2 ≥ −𝑏 , 𝑏 ≡ 𝑦 − 𝜖

1 + 𝑟 > 0

Assume that borrowing limit is not binding
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Solving the household problem: optimality conditions
Precautionary savings model

■ Euler equation (22) now given by

1
𝑦 − 𝑎2

= (1 + 𝑟 )
[
1
2

1
(1 + 𝑟 )𝑎2 + 𝑦 − 𝜖

+ 1
2

1
(1 + 𝑟 )𝑎2 + 𝑦 + 𝜖

]
︸                                                  ︷︷                                                  ︸

E
[
𝑢′ ( (1+𝑟 )𝑎2+𝑦2 )

]
(24)

■ Need to extract 𝑎2 out of expectation
1 Common denominator:[

(1 + 𝑟 )𝑎2 + 𝑦 − 𝜖
] [
(1 + 𝑟 )𝑎2 + 𝑦 + 𝜖

]
=
[
(1 + 𝑟 )𝑎2 + 𝑦

]2 − 𝜖2

2 Rearrange terms inside bracket of (24)

E
[
𝑢′ ((1 + 𝑟 )𝑎2 + 𝑦2)

]
=
1
2

1
(1 + 𝑟 )𝑎2 + 𝑦 − 𝜖

+ 1
2

1
(1 + 𝑟 )𝑎2 + 𝑦 + 𝜖

=
1
2

(1 + 𝑟 )𝑎2 + 𝑦 + 𝜖[
(1 + 𝑟 )𝑎2 + 𝑦

]2 − 𝜖2
+ 1
2

(1 + 𝑟 )𝑎2 + 𝑦 − 𝜖[
(1 + 𝑟 )𝑎2 + 𝑦

]2 − 𝜖2

=
(1 + 𝑟 )𝑎2 + 𝑦[

(1 + 𝑟 )𝑎2 + 𝑦
]2 − 𝜖2
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Solving the household problem: optimality conditions
Precautionary savings model

■ Euler equation now reads

1
𝑦 − 𝑎2

= (1 + 𝑟 ) (1 + 𝑟 )𝑎2 + 𝑦[
(1 + 𝑟 )𝑎2 + 𝑦

]2 − 𝜖2
(25)

■ Expand and collect terms:[
2(1 + 𝑟 )2

]
︸       ︷︷       ︸

𝐴

𝑎22 +
[
(1 + 𝑟 ) (2 − 𝑟 )𝑦

]
︸                ︷︷                ︸

𝐵

𝑎2 +
[
−𝑟𝑦2 − 𝜖2

]
︸        ︷︷        ︸

𝐶

= 0

■ Solve using quadratic formula:

𝑎2 = − 𝐵

2𝐴
±
√
𝐵2 − 4𝐴𝐶

2𝐴
■ 𝑎2 as function of parameters:

𝑎2 = − (2 − 𝑟 )𝑦
4(1 + 𝑟 ) +

√︁
(2 + 𝑟 )2𝑦2 + 8𝜖2

4(1 + 𝑟 ) (26)
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Does the solution make sense?
Precautionary savings model

Examine under simplifying assumptions!

Assume 𝑟 = 0
■ Solution simplifies to

𝑎2 = −2𝑦
4

+
√︁
22𝑦2 + 8𝜖2

4

> −2𝑦
4

+
√︁
22𝑦2

4
= −2𝑦

4
+ 2𝑦

4
= 0

■ Without uncertainty we know 𝑎2 = 0
■ With uncertainty, HH saves strictly

positive amount
=⇒ precautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savingsprecautionary savings

Assume 𝜖 = 0
■ 𝑎2 simplifies to

𝑎2 = − (2 − 𝑟 )𝑦
4(1 + 𝑟 ) +

√︁
(2 + 𝑟 )2𝑦2
4(1 + 𝑟 )

= − (2 − 𝑟 )𝑦
4(1 + 𝑟 ) + (2 + 𝑟 )𝑦

4(1 + 𝑟 )

=
−2𝑦 + 𝑟𝑦 + 2𝑦 + 𝑟𝑦

4(1 + 𝑟 )

=
1
2

𝑟

1 + 𝑟 𝑦 (27)

=⇒ 𝑐1 = 𝑦 − 𝑎2 =
1
2
2 + 𝑟
1 + 𝑟 𝑦

■ Identical to what we found for
deterministic model in earlier units
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Precautionary savings:
Results from numerical solution



Mean-preserving spread & risk aversion
Precautionary savings model

■ Relax assumption of log preferences

■ Examine increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖increase in 𝜖 : mean-preserving spread (recall last unit)

E𝑦2 =
1
2
(𝑦 − 𝜖) + 1

2
(𝑦 + 𝜖) = 𝑦

Var (𝑦2 ) =
1
2
[
𝑦 − 𝜖 − 𝑦

]2 + 1
2
[
𝑦 + 𝜖 − 𝑦

]2
= 𝜖2

Effect on precautionary savings? — Can be seen from (26) for log preferences

How does response depend on RRA? — Increasing in RRA
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Mean-preserving spread & risk aversion
Precautionary savings model

Optimal savings for different RRA and income risk levels
Parameters: 𝛽 = 1, 𝑟 = 0. For 𝛾 = 1, this plots optimal 𝑎2 from (26) against 𝜖 .
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Figure 6: Precautionary savings as a function of the RRA coefficient 𝛾 and income risk
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Precautionary savings:
General equilibrium



Model environment
Precautionary savings model

■ Household problem as before, with CRRA preferences

■ 𝑦1 = E𝑦2 = 𝑦, with 𝑦2 given by

𝑦2 =

{
𝑦 − 𝜖 with prob. 𝜋

𝑦 + 𝜖 with prob. 1 − 𝜋
(28)

■ Economy populated by arbitrary number of ex ante identical households

How can we solve for equilibrium 𝑟?

■ HH are ex ante identical =⇒ all make identical choices 𝑐1, 𝑎2
■ Not possible that some HH are savers, others borrowers!

■ All HH must consume their endowment each period
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Solving for equilibrium
Precautionary savings model

■ Euler equation given by

𝑐
−𝛾
1 = 𝛽 (1 + 𝑟 )E

[
𝑐
−𝛾
2

]
=⇒ 𝑦−𝛾 = 𝛽 (1 + 𝑟 )E

[
𝑦
−𝛾
2

]
since 𝑐1 = 𝑦, 𝑐2 = 𝑦2

■ Expand expectations:

𝑦−𝛾 = 𝛽 (1 + 𝑟 )
[
𝜋 (𝑦 − 𝜖)−𝛾 + (1 − 𝜋) (𝑦 + 𝜖)−𝛾

]
■ Solve for equilibrium 𝑟 :

1 + 𝑟 = 𝛽−1
𝑦−𝛾

E
[
𝑦
−𝛾
2

] = 𝛽−1
𝑦−𝛾

𝜋 (𝑦 − 𝜖)−𝛾 + (1 − 𝜋) (𝑦 + 𝜖)−𝛾 (29)

■ Mean-preserving spread: from Figure 4b we know

𝜖 ↑ =⇒ E
[
𝑦
−𝛾
2

]
↑ =⇒ 𝑟 ↓

Intuition? Riskier income =⇒ HH wants to increase precautionary savings
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Equilibrium interest rate
Precautionary savings model

Parameters: 𝑦 = 1, 𝛽 = 1, 𝜋 = 1
2 . Plots equilibrium 𝑟 from (29).
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Figure 7: Equilibrium interest rate as a function of income risk and the RRA coefficient 𝛾

Effect of RRA on equilibrium 𝑟?
More risk-averse HH wants to increase savings more =⇒ 𝑟 ↓
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Main takeaways from this unit



Main takeaways

Certainty equivalence model
1 Optimal choices identical to deterministic case (after replacing certain quantities

with expectations)

2 Households do not respond to risk that leaves mean unchanged

3 Allows for analytical solutions, but has many flaws. Rarely used in
heterogeneous-agent macroeconomics.

Precautionary savings model
1 Households respond to risk by increasing precautionary savings

Savings increasing in shock variance
Savings increasing in risk aversion

2 Optimal solutions differ from deterministic counterparts

3 Backbone of modern macroeconomics, but hard to solve analytically

33 / 33



Unit 5: Overlapping generations models
Advanced Macroeconomics (ECON4040) – Part 2

Richard Foltyn

March 17, 2023



Outline for today

1 Introduction

2 Pure endowment economy
Two overlapping cohorts
Three overlapping cohorts

3 OLG with a government
Government debt
Pension system with exogenous labour supply
Pension system with endogenous labour supply

4 Social planner solution

5 Main takeaways

In-course exam: March 23, 6:30–9pm
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Overlapping generations models (OLG)

Unit 2: lifecycle models
■ Analyse choices of single cohort over its lifetime

■ Partial equilibrium

Today: Overlapping generations models (OLG)
■ Multiple cohorts alive at the same time

■ General equilibrium
■ Simplest example: two cohorts, each lives for two periods

“young” — assumed to work, want to save for retirement
“old” — consume savings and die

Representative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohortRepresentative cohort: each cohort consists of exactly one household

■ Stationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economyStationary economy exists indefinitely
All aggregate quantities are time invariant
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Overlapping generations models (OLG)

t t+1 t+2 t+3 t+4
Time

t

t+1

t+2

t+3

C
oh

or
t

y1, t y2, t + 1

y1, t + 1 y2, t + 2

y1, t + 2 y2, t + 3

y1, t + 3 y2, t + 4

Figure 1: Cohort structure in OLG model with agents who live for two periods. (𝑦1, 𝑦2) denotes
endowments agents receive when young and old, respectively.
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Pure endowment economy
with

two cohorts



Pure endowment economy

■ Incomplete markets
■ Household receives endowment 𝑦1 > 0 when young, 𝑦2 = 0 when old

■ Maximisation problem:

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 (1)

■ Well-defined problem in partial equilibrium

But does this make sense in general equilibrium?
■ Old household:

Cannot borrow (not alive to repay)
Does not want to save (not alive to consume savings)

■ Young household: would like to save
■ In aggregate, assets are in zero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supplyzero net supply: sum of saving/borrowing has to be zero
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More sensible assumptions for OLG

Need richer environment — Examples?

1 HH receive positive endowments each period

2 Each household lives many periods, many cohorts alive at the same time
With many cohorts, young borrow, middle-aged HH save

3 Assets in positive net supply
1 Government bonds
2 Production economy with physical capital (not covered in this unit)

4 Government facilitates inter-generational transfers via pension system
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Endowments in both periods

■ Household receives endowment 𝑦1 > 0
when young, 𝑦2 > 0 when old

■ Maximisation problem:

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 = (1 + 𝑟 )𝑎2 + 𝑦2

Is there anything new here? — No!

1 Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = 𝑦1 +
𝑦2

1 + 𝑟

2 Lagrangian:

L = 𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

+ 𝜆

[
𝑦1 +

𝑦2

1 + 𝑟 − 𝑐1 −
𝑐2

1 + 𝑟

]
3 Euler equation:

𝑢′(𝑐1) = 𝛽 (1 + 𝑟 )𝑢′(𝑐2)

4 Impose autarky: 𝑐1 = 𝑦1, 𝑐2 = 𝑦2

5 Equilibrium interest rate:

𝑟 =
𝑢′(𝑦1)
𝛽𝑢′(𝑦2)

− 1
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Pure endowment economy
with

three cohorts



OLG with three overlapping generations

■ Introduce additional working-age cohort to get around problem of old generation
not saving/borrowing

t t+1 t+2 t+3 t+4 t+5
Time

t

t+1

t+2

t+3

C
oh

or
t

y1, t y2, t + 1 y3, t + 2

y1, t + 1 y2, t + 2 y3, t + 3

y1, t + 2 y2, t + 3 y3, t + 4

y1, t + 3 y2, t + 4 y3, t + 5

Figure 2: Cohort structure in OLG model with agents who live for three periods..
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Household problem
OLG with three cohorts

■ Maximisation problem:

max
𝑐1, 𝑐2, 𝑐3, 𝑎2, 𝑎3

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2) + 𝛽2𝑢 (𝑐3)

s.t. 𝑐1 + 𝑎2 = 𝑦1

𝑐2 + 𝑎3 = (1 + 𝑟 )𝑎2 + 𝑦2
𝑐3 = (1 + 𝑟 )𝑎3 + 𝑦3

■ Household receives endowments (𝑦1, 𝑦2, 𝑦3) where 𝑦3 could be zero

■ As before: no possibility/incentive to borrow/save in terminal period 3

■ Goal: find equilibrium where HH wants to borrow at age 1 and save at age 2.

When will there be such an equilibrium?
Upward-sloping income trajectory⇒ want to borrow at age 1
𝑦3 ≪ 𝑦2 (low replacement rate) ⇒ want to save at age 2
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Solving the HH problem (partial equilibrium)
OLG with three cohorts

1 Lifetime budget constraint:

𝑐1 +
𝑐2

(1 + 𝑟 ) +
𝑐3

(1 + 𝑟 )2

= 𝑦1 +
𝑦1

(1 + 𝑟 ) +
𝑦3

(1 + 𝑟 )2

2 Lagrangian:

L = 𝑢 (𝑐1) + 𝛽𝑢 (𝑐2) + 𝛽2𝑢 (𝑐3)

+ 𝜆

[
𝑦1 +

𝑦1

(1 + 𝑟 ) +
𝑦3

(1 + 𝑟 )2

− 𝑐1 −
𝑐2

(1 + 𝑟 ) −
𝑐3

(1 + 𝑟 )2

]

3 First-order conditions:

𝜕L
𝜕𝑐1

= 𝑢′(𝑐1) − 𝜆 = 0 (2)

𝜕L
𝜕𝑐2

= 𝛽𝑢′(𝑐2) −
𝜆

1 + 𝑟 = 0 (3)

𝜕L
𝜕𝑐3

= 𝛽2𝑢′(𝑐2) −
𝜆

(1 + 𝑟 )2 = 0 (4)

4 Euler equations from (2) + (3) and (3) +
(4):

𝑢′(𝑐1) = 𝛽 (1 + 𝑟 )𝑢′(𝑐2)
𝑢′(𝑐2) = 𝛽 (1 + 𝑟 )𝑢′(𝑐3)
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Solution to the HH problem (partial equilibrium)
OLG with three cohorts

1 Euler equations with CRRA:

𝑐
−𝛾
1 = 𝛽 (1 + 𝑟 )𝑐−𝛾2
𝑐
−𝛾
2 = 𝛽 (1 + 𝑟 )𝑐−𝛾3

2 Express 𝑐2, 𝑐3 in terms of 𝑐1:

𝑐2 =
[
𝛽 (1 + 𝑟 )

] 1
𝛾 𝑐1

𝑐3 =
[
𝛽 (1 + 𝑟 )

] 1
𝛾 𝑐2 =

[
𝛽 (1 + 𝑟 )

] 2
𝛾 𝑐1

3 Solve for 𝑐1 using LTBC

4 For log preferences, optimal consumption is

𝑐1 =
1

1 + 𝛽 + 𝛽2

[
𝑦1 +

𝑦2

(1 + 𝑟 ) +
𝑦3

(1 + 𝑟 )2

]
(5)

𝑐2 =
𝛽 (1 + 𝑟 )
1 + 𝛽 + 𝛽2

[
𝑦1 +

𝑦2

(1 + 𝑟 ) +
𝑦3

(1 + 𝑟 )2

]
(6)

𝑐3 =
𝛽2(1 + 𝑟 )2
1 + 𝛽 + 𝛽2

[
𝑦1 +

𝑦2

(1 + 𝑟 ) +
𝑦3

(1 + 𝑟 )2

]
(7)
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General equilibrium
OLG with three cohorts

■ Need to impose market clearing to find 𝑟

Which markets are operational in this economy?
Asset market for saving/borrowing

At which age do HH trade in assets?
Borrowing/saving possible at ages 1 + 2
No borrowing/saving at age 3

■ Market clearing: with representative cohorts, borrowing (savings) at age 1 has to
equal savings (borrowing) at age 2:

−𝑎2 = 𝑎3

■ Substitute optimal consumption from (5) and (7) into market clearing condition

− (𝑦1 − 𝑐1)︸    ︷︷    ︸
=𝑎2

=
1

1 + 𝑟 (𝑦3 − 𝑐3)︸           ︷︷           ︸
=𝑎3

Results in nonlinear equation in 𝑟 , needs to be solved numerically.
11 / 33



Optimal saving / borrowing
OLG with three cohorts

■ Numerical solution for 𝛽 = 1, 𝛾 = 1, 𝑦1 = 1, 𝑦2 = 2
■ Define replacement rate 𝜌 = 𝑦3/𝑦2
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(a) Saving at age 2: 𝑎3
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(b) Borrowing at age 1: 𝑎2

Figure 3: Borrowing/saving plotted against the replacement rate 𝜌 = 𝑦3/𝑦2 of retirement income.
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Equilibrium interest rate
OLG with three cohorts

■ Lower replacement rate 𝜌 increases incentive to save at age 2 (consumption
smoothing)

■ Lower equilibrium 𝑟 required so that HH at age 1 is willing to borrow more
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Figure 4: Equilibrium interest rate plotted against the replacement rate 𝜌 = 𝑦3/𝑦2 of retirement income.
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Government debt
with

two cohorts



Government debt

■ Introduce another agent into economy which supplies savings opportunities

■ Infinitely lived government issues debt 𝑏𝑡 , pays interest 𝑟𝑡 , raises taxes 𝜏𝑡
■ Dynamic government budget constraint:

𝑏𝑡+1 + 𝜏𝑡︸   ︷︷   ︸
Revenues

= (1 + 𝑟𝑡 )𝑏𝑡︸     ︷︷     ︸
Debt repayment

■ Stationary economy: 𝑏𝑡 , 𝜏𝑡 and 𝑟𝑡 constant
Government rolls over stock of debt 𝑏 indefinitely
Government budget:

𝑏 + 𝜏 = (1 + 𝑟 )𝑏 =⇒ 𝜏 = 𝑟𝑏 (8)

■ General equilibrium:
Government decides on policy variable 𝑏
𝑟 and 𝜏 determined endogenously from (8) and bond market clearing
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Household problem (partial equilibrium)
OLG with government debt

■ Household problem:

max
𝑐1, 𝑐2, 𝑎2

log(𝑐1) + 𝛽 log(𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1 − 𝜏

𝑐2 = (1 + 𝑟 )𝑎2 (9)

Pays lump sum income taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome taxincome tax 𝜏 when
young

1 Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = 𝑦1 − 𝜏 (10)

2 Euler equation:

1
𝑐1

= 𝛽 (1 + 𝑟 ) 1
𝑐2

(11)

3 Solve (11) for 𝑐1, plug into (10):

𝑐1 +
𝛽 (1 + 𝑟 )𝑐1

1 + 𝑟 = 𝑦1 − 𝜏

=⇒ 𝑐1 =
1

1 + 𝛽

[
𝑦1 − 𝜏

]
(12)

4 Optimal savings: (9) + (12)

𝑎2 = 𝑦1 − 𝜏 − 𝑐1 =
𝛽

1 + 𝛽

[
𝑦1 − 𝜏

]
(13)
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General equilibrium
OLG with government debt

Which equilibrium conditions need to be satisfied?
1 Bond market clearing: 𝑎2 = 𝑏

2 Equilibrium 𝑟 must satisfy HH optimality conditions given disposable income 𝑦1 − 𝜏

3 𝜏 must satisfy government budget constraint (8)
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General equilibrium
OLG with government debt

1 Savings: impose 𝑎2 = 𝑏 in (13):

𝑏 =
𝛽

1 + 𝛽

[
𝑦1 − 𝜏

]
2 Plug in gov’t BC (8):

𝑏 =
𝛽

1 + 𝛽

[
𝑦1 − 𝑟𝑏

]
3 Solve for equilibrium 𝑟 :

𝑟 =
𝑦1

𝑏
− 1 + 𝛽

𝛽
(14)

4 Solve for 𝜏 from gov’t BC:

𝜏 = 𝑦1 −
1 + 𝛽

𝛽
𝑏 (15)

Equilibrium consumption
■ Consumption when young: (12) + (15)

𝑐1 =
1

1 + 𝛽

[
𝑦1 − 𝜏

]
=

1
𝛽
𝑏 (16)

■ Consumption when old: (9) + (14)

𝑐2 = (1 + 𝑟 )𝑏 = 𝑦1 −
1
𝛽
𝑏 (17)

Government can set consumption
(𝑐1, 𝑐2) via policy 𝑏!
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Equilibrium tax and interest rate
OLG with government debt

Plot against debt-to-income ratio 𝑏/𝑦1
Each point represents an equilibrium for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏.
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(b) Interest rate 𝑟

Figure 5: Income tax and equilibrium interest rate plotted against the debt-to-income ratio 𝑏/𝑦1 for 𝛽 = 1
and 𝑦1 = 1.
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Equilibrium consumption
OLG with government debt

Plot against debt-to-income ratio 𝑏/𝑦1
Each point represents an equilibrium for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏for a given debt level 𝑏.
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Figure 6: Optimal consumption plotted against the debt-to-income ratio 𝑏/𝑦1 for 𝛽 = 1 and 𝑦1 = 1.

19 / 33



Optimal level of government debt



Optimal level of government debt

■ Which 𝑏 should the government choose?
Takes into account optimal HH response

■ Assumption: government values welfare of all
cohorts equally

Sufficient to maximise utility of one cohort

■ Government problem:

max
𝑏∈[0, 𝛽𝑦1 ]

log(𝑐∗1) + 𝛽 log(𝑐∗2)

■ 𝑐∗1 and 𝑐
∗
2 are optimal HH choices (16) and (17):

𝑐∗1 =
1
𝛽
𝑏

𝑐∗2 = 𝑦1 −
1
𝛽
𝑏
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Figure 7: Household utility as a function
of debt-to-income ratio for 𝛽 = 1
and 𝑦1 = 1.
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Government problem
OLG with optimal government debt

1 Government objective:

max
𝑏∈[0, 𝛽𝑦1 ]

log
(
𝛽−1𝑏

)
+ 𝛽 log

(
𝑦1 − 𝛽−1𝑏

)
2 First-order condition:

1
𝑏
− 𝛽

𝛽−1

𝑦1 − 𝛽−1𝑏
= 0 (18)

3 Solve (18) for 𝑏:

𝑏∗ =
𝛽

1 + 𝛽
𝑦1 (19)

4 Welfare-maximising 𝑐1:

𝑐1 =
1
𝛽
𝑏∗ =

1
1 + 𝛽

𝑦1

5 Welfare-maximising 𝑐2:

𝑐2 = 𝑦1 −
1
𝛽
𝑏∗ =

𝛽

1 + 𝛽
𝑦1

6 Equilibrium interest rate: (14) + (19)

𝑟 =
𝑦1
𝛽

1+𝛽𝑦1
− 1 + 𝛽

𝛽
= 0 (20)

Equilibrium illustrated by dotted lines in Figure 5, Figure 6 and Figure 7
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Pension system with exogenous labour supply

■ Alternative way to transfer resources between cohorts: pension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension systempension system

■ PAYGO: pay-as-you-go pension system
Government imposes payroll tax 𝜏 on working (young) households
Distributes pension payments 𝑇 to old

Budget balance (assuming one HH per cohort):

𝜏︸︷︷︸
Payroll tax revenues

= 𝑇︸︷︷︸
Pensions
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Household problem
Pension system with exogenous labour supply

1 Household problem

max
𝑐1, 𝑐2, 𝑎2

𝑢 (𝑐1) + 𝛽𝑢 (𝑐2)

s.t. 𝑐1 + 𝑎2 = 𝑦1 − 𝜏

𝑐2 = (1 + 𝑟 )𝑎2 + 𝜏

2 Euler equation is standard:

𝑢′(𝑐1) = 𝛽 (1 + 𝑟 )𝑢′(𝑐2) (21)

3 No saving in equilibrium:

𝑐1 = 𝑦1 − 𝜏

𝑐2 = 𝜏

4 Equilibrium 𝑟 from (21):

𝑟 =
𝑢′(𝑦1 − 𝜏)
𝛽𝑢′(𝜏) − 1

Again, HH consumption is fully
determined by government policy 𝜏 !
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Optimal payroll tax
Pension system with exogenous labour supply

Which 𝜏 should government implement?

1 Government objective (CRRA):

max
𝜏∈[0, 𝑦1 ]

(𝑦1 − 𝜏)1−𝛾
1 − 𝛾

+ 𝛽
𝜏1−𝛾

1 − 𝛾

2 First-order condition:

− (𝑦1 − 𝜏)−𝛾 + 𝛽𝜏−𝛾 = 0

3 Optimal 𝜏 :

𝜏 =
𝑦1

1 + 𝛽
− 1

𝛾

(22)

4 Welfare-maximising consumption:

𝑐1 = 𝑦1 − 𝜏 =
𝛽
− 1

𝛾

1 + 𝛽
− 1

𝛾

𝑦1

𝑐2 = 𝜏 =
1

1 + 𝛽
− 1

𝛾

𝑦1

5 Equilibrium 𝑟 from EE (21):(
𝛽
− 1

𝛾

1 + 𝛽
− 1

𝛾

𝑦1

)−𝛾
= 𝛽 (1 + 𝑟 )

(
1

1 + 𝛽
− 1

𝛾

𝑦1

)−𝛾
𝛽 = 𝛽 (1 + 𝑟 )

=⇒ 𝑟 = 0
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Optimal payroll tax: Intuition
Pension system with exogenous labour supply

Simplifying assumptions to get some intuition

Assume 𝛽 = 1
■ Optimal payroll tax:

𝜏 =
1
2
𝑦1

Half of endowment consumed in
each period

Assume 𝛾 = 1
■ Optimal payroll tax:

𝜏 =
1

1 + 𝛽−1
𝑦1 =

𝛽

1 + 𝛽
𝑦1

Identical to optimal savings if
savings was possible

■ Optimal consumption 𝑐1:

𝑐1 = 𝑦1 − 𝜏 =
1

1 + 𝛽
𝑦1
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Pension system with endogenous labour supply

■ So far, labour supply was exogenous (= endowment)
■ Payroll taxes could potentially affect willingness to work

Effect on aggregate output in production economy?

Economic environment
■ Endogenous leisure choice ℓ , labour supply 1 − ℓ

■ Production function 𝑓 (𝐿) = 𝐴 · 𝐿
Implies equilibrium wage𝑤 = 𝐴

■ Proportional payroll tax 𝜏

■ Lump-sum pension transfer 𝑇

■ Government budget balance (PAYGO):

𝑇︸︷︷︸
Pensions

= 𝜏𝑤 (1 − ℓ)︸     ︷︷     ︸
Payroll taxes

(23)
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Household problem
Pension system with endogenous labour supply

■ Household maximises:

max
𝑐1, 𝑐2, 𝑎2

log(𝑐1) + log(ℓ) + 𝛽 log(𝑐2)

s.t. 𝑐1 + 𝑎2 = (1 − 𝜏)𝑤 (1 − ℓ) (24)

𝑐2 = (1 + 𝑟 )𝑎2 +𝑇 (25)

■ Supplies labour 0 ≤ 1 − ℓ ≤ 1 while young
■ Receives pension 𝑇 when old

■ log-log preferences like in part 1 of the course

■ Lifetime budget constraint:

𝑐1 +
𝑐2

1 + 𝑟 = (1 − 𝜏)𝑤 (1 − ℓ) + 𝑇

1 + 𝑟 (26)
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Household optimality conditions
Pension system with endogenous labour supply

1 Lagrangian:

L = log(𝑐1) + log(ℓ) + 𝛽 log(𝑐2)

+𝜆
[
(1 − 𝜏)𝑤 (1 − ℓ) + 𝑇

1 + 𝑟 − 𝑐1 +
𝑐2

1 + 𝑟

]
2 First-order conditions:

𝜕L
𝜕𝑐1

=
1
𝑐1

− 𝜆 = 0 (27)

𝜕L
𝜕𝑐2

= 𝛽
1
𝑐2

− 𝜆

1 + 𝑟 = 0 (28)

𝜕L
𝜕ℓ

=
1
ℓ
− 𝜆(1 − 𝜏)𝑤 = 0 (29)

3 Euler equation: (27) + (28)

1
𝑐1

= 𝛽 (1 + 𝑟 ) 1
𝑐2

4 Intra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporalIntra-temporal optimality: (27) + (29)

1/ℓ
1/𝑐1︸︷︷︸

𝑀𝑅𝑆𝑐1,ℓ

=
(1 − 𝜏)𝑤

1︸     ︷︷     ︸
Relative price

(30)

Solve for 𝑐1:

𝑐1 = ℓ (1 − 𝜏)𝑤 (31)
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Solving for equilibrium
Pension system with endogenous labour supply

1 No savings in equilibrium: Set 𝑎2 = 0 in
(24) + (25) + (23)

𝑐1 = (1 − 𝜏)𝑤 (1 − ℓ) (32)

𝑐2 = 𝑇 = 𝜏 (1 − ℓ)𝑤 (33)

2 Combine (31) + (32):

𝑐1 = (1 − 𝜏)𝑤 (1 − ℓ)
ℓ (1 − 𝜏)𝑤 = (1 − 𝜏)𝑤 (1 − ℓ)

ℓ = (1 − ℓ)

=⇒ ℓ =
1
2

3 Optimal consumption:

𝑐1 =
1
2
(1 − 𝜏)𝑤

𝑐2 =
1
2
𝜏𝑤

4 Equilibrium interest rate from EE:

1
1
2 (1 − 𝜏)𝑤

= 𝛽 (1 + 𝑟 ) 1
1
2𝜏𝑤

1
1 − 𝜏

= 𝛽 (1 + 𝑟 ) 1
𝜏

=⇒ 𝑟 =
1
𝛽

𝜏

1 − 𝜏
− 1 (34)
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Optimal payroll tax
Pension system with endogenous labour supply

1 Government solves:

max
𝜏∈[0,1]

log(𝑐∗1) + log(ℓ∗) + 𝛽 log(𝑐∗2)

2 Plug in HH choices:

max
𝜏∈[0,1]

log
(
1
2
(1 − 𝜏)𝑤

)
+ log

(
1
2

)
+ 𝛽 log

(
1
2
𝜏𝑤

)
3 Equivalent problem (for fixed𝑤 = 𝐴):

max
𝜏∈[0,1]

log((1 − 𝜏)) + 𝛽 log(𝜏)

4 First-order condition:

− 1
1 − 𝜏

+ 𝛽
1
𝜏
= 0 (35)

5 Welfare-maximising 𝜏 :

𝜏 =
𝛽

1 + 𝛽

6 Equilibrium interest rate from EE:

𝑟 ∗ =
1
𝛽

𝛽

1+𝛽

1 − 𝛽

1+𝛽

− 1

=
1
𝛽

𝛽

1+𝛽
1

1+𝛽
− 1 =

1
𝛽

𝛽

1
− 1 = 0
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Comparing models with government

Consumption allocation and 𝑟 with optimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimaloptimal government policy and log preferences

Government debt

■ Interest rate: 𝑟 = 0
■ Consumption:

𝑐1 =
1

1 + 𝛽
𝑦1

𝑐2 =
𝛽

1 + 𝛽
𝑦1

Pensions + exog. labour

■ Interest rate: 𝑟 = 0
■ Consumption:

𝑐1 =
1

1 + 𝛽
𝑦1

𝑐2 =
𝛽

1 + 𝛽
𝑦1

Pensions + endog. labour

■ Interest rate: 𝑟 = 0
■ Consumption:

𝑐1 =
1

1 + 𝛽

1
2
𝑤

𝑐2 =
𝛽

1 + 𝛽

1
2
𝑤

With endog. labour: set productivity 𝐴 = 2𝑦1 = 𝑤 to get identical allocation
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Social planner problem

■ WeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeightedWeighted maximisation:

max
𝑐1, 𝑐2

log(𝑐1) + 𝛽 log(𝑐2)

s.t. 𝑐1 + 𝑐2 = 𝑦1

Attaches weight 1 to young, weight 𝛽
to old

1 First-order conditions:

1
𝑐1

= 𝜆

𝛽
1
𝑐2

= 𝜆

1 Cohort-specific consumption linked by

1
𝑐1

= 𝛽
1
𝑐2

=⇒ 𝑐2 = 𝛽𝑐1

2 Plug into resource constraint:

𝑐1 + 𝛽𝑐1 = 𝑦1

=⇒ 𝑐1 =
1

1 + 𝛽
𝑦1

=⇒ 𝑐2 =
𝛽

1 + 𝛽
𝑦1

Conclusion: we have solved the same problem threethreethreethreethreethreethreethreethreethreethreethreethreethreethreethreethree times! — Government can use
single policy variable to achieve first best
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Main takeaways

Endowment economy

1 With only two cohorts and no government, autarky is only achievable equilibrium
(in incomplete markets)

2 Government can help transfer resources between cohorts / across time:
Government debt: asset in positive net supply
Pension system (with exogenous or endogenous labour supply)

3 More than two cohorts: young can borrow from middle-aged HH who save for
retirement

More complex OLG models
1 Production economy with capital: savings possible even with two cohorts, no

government needed
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