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1 Heterogeneity in macroeconomics

1.1 Introduction

Representative-agent (RA) models are ubiquitous in macroeconomics. This is in part
due to historical reasons as they are easier to solve than heterogeneous-agent models,
since the latter usually require numerical solution methods that were not feasible a few
decades ago. If one is only interested in aggregate outcomes (such as prices, aggregate
consumption, GDP, etc.), in many cases RA models can be used without loss of generality
if a model economy perfectly aggregates. Loosely speaking, aggregation holds if aggregate
outcomes are the same irrespective of whether we model a single, representative agent or
a group of agents which are allowed to differ in their wealth, income, labour productivity,
age or some other characteristic. Conversely, if an economy with heterogeneous agents
behaves very differently in the aggregate, a representative-agent economy may not be
adequate to explain an empirical observation or evaluate a government policy. Moreover,
RA models by construction have nothing to say about issues of inequality (e.g., in terms
of consumption, income or wealth), of which there is plenty as we will see in section 1.5.

We will not be concerned with the formal requirements for aggregation to hold, but
will instead illustrate the concept using a few examples. Aggregation usually fails if
markets are not complete which means that households cannot perfectly insure against
their idiosyncratic risk, i.e., risk that affects only a single household, as opposed to the
entire economy. However, aggregation may fail even in the absence of risk, for example
if households face borrowing constraints. We discuss this case below.

First, however, we start by going over the two-period consumption-savings problem
in an economy with either one or two households, which will serve as our modelling
framework for the rest of this unit (and for most of the course).

1.2 Consumption-savings with heterogeneous households

To fix ideas, recall the two-period household maximisation problem which you already
encountered:

max
c1, c2, a2

u(c1) + βu(c2) (1.1)

s.t. c1 + a2 = a1 + y1

c2 = (1 + r)a2 + y2

c1 ≥ 0, c2 ≥ 0 (1.2)
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Figure 1.1: CRRA utility for different values of the relative risk aversion parameter γ.

Throughout these notes, we use a utility function that exhibits constant relative risk aversion
(CRRA), the most common type of household preferences used in macroeconomics:

u(c) =

{
c1−γ−1

1−γ if γ ̸= 1

log(c) if γ = 1
(1.3)

In the previous part, you used log preferences which are a special case if the relative
risk aversion parameter γ is set to one.1 We discuss the exact interpretation of the RRA
parameter later, for now it is sufficient to think of it as governing the curvature of the
utility function (see Figure 1.1).

The agent enters the first period with assets a1, receives income (y1, y2) in the two
periods and can borrow or save at a fixed interest rate r which is taken as given by the
household. Consumption has to be non-negative as required by (1.2), but given our
usual choice of utility function, the household will always choose positive consumption,
so we ignore these constraints from now on.2 To keep the exposition simple, we for now
impose log preferences, u(c) = log(c), no discounting so that β = 1, and we assume
that initial assets are zero, a1 = 0. We will return to a more general formulation at a later
point. With these simplifications, the household problem reads

max
c1, c2, a2

log(c1) + log(c2) (1.4)

s.t. c1 + a2 = y1 (1.5)
c2 = (1 + r)a2 + y2 (1.6)

We now proceed to solve for the optimal choices and for general equilibrium under two
different assumptions on borrowing.

1Using L’Hospitals rule, one can show that limγ→1
c1−γ−1

1−γ = log(c). The additional constant − 1
1−γ does

not affect the maximisation problem so it is often omitted and utility is written as u(c) = c1−γ

1−γ .
2With CRRA preferences, utility u(c) approaches −∞ as c approaches zero, so this can never be optimal.
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Example 1.1 (Two-period problem without borrowing constraints). Consider the
household problem in (1.4). Without borrowing constraints, the household can choose
any a2 (even negative values!), and we can therefore combine the per-period budget
constraints (1.5) and (1.6) into a single present-value lifetime budget constraint by solving
(1.5) for a2 = y1 − c1 and plugging this expression into (1.6):

c2 = (1 + r)
(
y1 − c1

)
+ y2 .

Dividing by (1 + r) and collecting the consumption terms on one side, we see that

c1 +
c2

1 + r︸ ︷︷ ︸
PV of cons.

= y1 +
y2

1 + r︸ ︷︷ ︸
PV of income

. (1.7)

This lifetime budget constraint has an intuitive interpretation: because households
can shift consumption across periods as they see fit (no borrowing constraint), it only
requires that the discounted sum of lifetime consumption on the left-hand side equals
the discounted sum of lifetime income on the right-hand side.

The Lagrangian for this problem is given by

L = log(c1) + log(c2) + λ

[
y1 +

y2

1 + r
− c1 −

c2

1 + r

]
(1.8)

where λ ≥ 0 is the Lagrange multiplier associated with the lifetime budget constraint
(1.7). The first-order conditions for c1 and c2 are

∂L
∂c1

=
1
c1

− λ = 0

∂L
∂c2

=
1
c2

− λ

1 + r
= 0

We combine these to eliminate λ and obtain the Euler equation:

1
c1

= (1 + r)
1
c2

(1.9)

This intertemporal optimality condition states that at the optimum, the household cannot
do better by shifting resources between periods because the marginal gain or loss in
period 1 is exactly offset in period 2.

We can solve (1.9) for c2,
c2 = (1 + r)c1 , (1.10)

and substitute the expression into the budget constraint (1.7):

c1 +
(1 + r)c1

1 + r
= y1 +

y2

1 + r

Solving for c1, we see that optimal first-period consumption is

c1 =
1
2

[
y1 +

y2

1 + r

]
. (1.11)
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The household consumes exactly half of its discounted lifetime income in the first period,
irrespective of the interest rate.3 To find optimal period-2 consumption, we plug (1.11)
into (1.10):

c2 =
1
2

[
(1 + r)y1 + y2

]
(1.12)

Equations (1.11) and (1.12) constitute the solution to the household’s optimisation
problem. ■

The previous example demonstrated how to solve the household problem in partial
equilibrium — the interest rate was taken as given and so far our model had nothing
to say about its general equilibrium value. To make further progress, we need to
make additional assumptions about the structure of the economy. In what follows, we
investigate two cases: an equilibrium with two types of households (the simplest form
of heterogeneity) where we allow for borrowing, and one where we do not.

Example 1.2 (General equilibrium with borrowing). Continuing with Example 1.1,
we now assume that there are two households in this economy, labelled A and B. Both
have identical preferences but differ in their income streams:

yA
1 = 3, yA

2 = 1

yB
1 = 1, yB

2 = 3

Intuitively, since utility is concave, these households will want to trade to smooth their
consumption across both periods instead of consuming their varying per-period income.
All we need to do is find the equilibrium interest rate that clears markets. Recall that a
(general) equilibrium is defined as a collection of:

1. Optimal consumption rules for each period which are functions of (y1, y2) and the
interest rate r. We derived these in (1.11) and (1.12).

2. Equilibrium prices which clear markets. In this example, we have only a single
price, r, since we normalised the price of period-1 consumption to 1.

Before finding the market-clearing r, we should remind ourselves which markets need
to be cleared. In this endowment economy, there are only two markets:

1. The market for consumption in period 1 (or equivalently, the market for savings in
period 1).

2. The market for consumption in period 2.

Because of Walras’ law, we need to clear only on of these, and market clearing in the other
will obtain automatically. We can thus proceed in two equivalent ways: first, market

3Of course, lifetime income itself depends on the interest rate, so the level of c1 also depends on r.
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clearing for savings in the first period requires that savings by A equal borrowing by B,
and therefore the following equality has to hold:

yA
1 − cA

1︸ ︷︷ ︸
Savings by A

= cB
1 − yB

1︸ ︷︷ ︸
Borrowing by B

(1.13)

We can substitute for optional consumption using (1.11) to find

yA
1 − cA

1 = cB
1 − yB

1

yA
1 − 1

2

[
yA

1 +
yA

2
1 + r

]
=

1
2

[
yB

1 +
yB

2
1 + r

]
− yB

1

yA
1 + yB

1 =
yA

2 + yB
2

1 + r

Y1 =
Y2

1 + r

On the last line, we define aggregate income in period t as Yt = yA
t + yB

t . The equilibrium
interest rate is therefore obtained as

r =
Y2

Y1
− 1 . (1.14)

In our example, Y1 = Y2 = 4, so r = 0. The discounted lifetime income for both types
i = A, B is therefore

yi
1 +

yi
2

1 + r
= yi

1 + yi
2 = 4 . (1.15)

Finally, (1.11) and (1.12) imply that both households consume two units in each period,
so they perfectly smooth consumption:

cA
1 = cA

2 = cB
1 = cB

2 = 2 . (1.16)

The other way to compute the equilibrium interest rate is to make sure that the goods
market in the second period clears (which is the same as making sure that the aggregate
resource constraint holds):

cA
2 + cB

2︸ ︷︷ ︸
Aggregate consumption

= yA
2 + yB

2︸ ︷︷ ︸
Aggregate endowment

Since there is no savings technology such as physical capital in this economy, the amount
consumed in the aggregate must equal the aggregate endowment in each period. If we
plug in the optimal consumption rules and do the algebra, we arrive at the same interest
rate as in (1.14).

Figure 1.2 illustrates this equilibrium graphically. The budget line has a slope of
−(1 + r) = −1 since the interest rate is zero, and it is a tangent to the indifference curve
at the optimal consumption allocation at point 1 .4

■
4Recall that an indifference curve is the collection of all consumption bundles (c1, c2) which yield the same

utility U, i.e., it is implicitly defined by U = log(c1) + log(c2).
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Figure 1.2: General equilibrium in Example 1.2 with borrowing. 1 shows the equilibrium
allocation and the blue lines are the corresponding indifference curves.

In the above example, type B has to borrow one unit in the first period to achieve
the desired consumption bundle. How does the equilibrium change if we shut down
borrowing completely (but the option to save remains intact)? We discuss this case next.

Example 1.3 (General equilibrium without borrowing). We now introduce a slight
modification to the household problem in (1.4):

max
c1, c2, a2

log(c1) + log(c2) (1.17)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

a2 ≥ 0 (1.18)

Here we added the constraint (1.18) so that the household can no longer borrow. Let’s
again assume that we have two types of households, A and B, and they have the same
income streams as in Example 1.2:

yA
1 = 3, yA

2 = 1

yB
1 = 1, yB

2 = 3

We can solve this problem in two different ways:

1. We use economic intuition and the results we found in Example 1.2 to quickly
identify the solution without too much math (the “shortcut”).

2. We solve the full constrained optimisation problem in (1.17).

We’ll work through both approaches in turn.
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Shortcut solution method. Previously, we found that household B was a borrower in
equilibrium, which is no longer permitted. While saving is still allowed and household
A would want to do so, we no longer have a counterpart in the economy where these
savings could be channelled (we say that the savings asset is in zero net supply, i.e., all
saving and borrowing must sum to zero in the aggregate). We therefore need to find
an equilibrium interest rate at which A is content to no longer save but instead just
consumes its endowment each period.

Since this interest rate has to be compatible with A’s optimality conditions, the natural
way to find it is to evaluate A’s Euler equation (1.9) at cA

1 = yA
1 and cA

2 = yA
2 :

1
cA

1
= (1 + r)

1
cA

2
=⇒ 1

yA
1
= (1 + r)

1
yA

2
=⇒ r =

yA
2

yA
1
− 1

Plugging in A’s income, we find that in equilibrium,

r =
yA

2

yA
1
− 1 =

1
3
− 1 = −2

3
≈ −66.7%

As far as interest rates go, this one is quite low. The reason is that household A would
really want to save because its income in the first period is so much larger. To discour-
age A from doing so in equilibrium, the required interest rate has to be sufficiently
unattractive!

Constrained optimisation problem. We now turn to the more formal way to derive
this result. With the additional constraint, we need to be somewhat more careful how we
set up the Lagrangian. Just adding the inequality constraint a2 ≥ 0 to (1.8) will not work
because we eliminated a2 as a choice variable by using the consolidated lifetime budget
constraint! Consequently, one solution is to add each per-period budget constraint
separately and keep a2 as a choice variable, giving us the following Lagrangian:5

L = log(c1) + log(c2) + λ1

[
y1 − a2 − c1

]
︸ ︷︷ ︸
Budget constr. t=1

+ λ2

[
(1 + r)a2 + y2 − c2

]
︸ ︷︷ ︸

Budget constr. t=2

+ λa · a2︸︷︷︸
Borrowing constr.

(1.19)

As there are three different constraints, we have three Lagrange multipliers λ1 ≥ 0,
λ2 ≥ 0 and λa ≥ 0. You may not have encountered inequality constraints like the one

5An alternative approach is to eliminate c1 and c2, define the Lagrangian as

L = log(y1 − a2) + log
(
(1 + r)a2 + y2

)
+ λaa2

and take the derivative with respect to a2. The resulting Euler equation is identical.
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in (1.18), so let’s briefly discuss how such constraints enter the Lagrangian. If we need
to impose an inequality constraint x ≥ y, we write it as x − y ≥ 0 and add the term
λ(x − y) to the Lagrangian where λ ≥ 0 is the multiplier for this constraint.

To find the optimum, we take derivatives as usual, in this case with respect to the
choice variables c1, c2 and a2:

∂L
∂c1

=
1
c1

− λ1 = 0 (1.20)

∂L
∂c2

=
1
c2

− λ2 = 0 (1.21)

∂L
∂a2

= −λ1 + λ2(1 + r) + λa = 0 (1.22)

However, in order to deal with the inequality constraint, there is an additional so-called
complementary slackness condition, λa · a2 = 0, which says the following:

1. Either the constraint is binding, i.e., a2 = 0 and λa ≥ 0.

2. The constraint is not binding, hence a2 > 0 and complementary slackness requires
that λa = 0. This makes sense if you recall the interpretation of the Lagrange
multiplier: it tells us how much the objective changes if we relax the constraint
by one unit. If the constraint is not binding, however, relaxing it further will not
change the optimal choice and will thus not alter the objective, so the value of the
multiplier must be zero!

To get the Euler equation for this problem, we substitute for λ1 and λ2 in (1.22) using
(1.20) and (1.21). This yields

1
c1

= (1 + r)
1
c2

+ λa (1.23)

which is almost identical to the Euler equation in (1.9) when borrowing was allowed. The
interpretation is as follows: if the household does not want to borrow at the optimum,
then λa = 0 and we are back to the original Euler equation. If, on the other hand, the
household would want to borrow but is not allowed to do so, then λa > 0 and the Euler
equation is no longer informative (we usually don’t know the value of λa).

Finding the equilibrium is somewhat more difficult than in Example 1.2 because
whether a household wants to borrow or not depends on the interest rate, but the
interest rate itself depends on the households’ desire to borrow or save. We thus do not
know ex ante whether the borrowing constraint is binding or not. We therefore employ
an approach called “guess and verify:” we make a conjecture about the equilibrium
allocation and try to find an interest rate that supports it. If such an interest rate exists,
our conjecture indeed is an equilibrium.

1. Previously, we found that household B would want to borrow, which is no longer
possible. We therefore conjecture that in equilibrium, B will be exactly at the
borrowing constraint and λB

a > 0.

Note that B’s Euler equation thus contains two unknowns, r and λB
a , and therefore

will not be helpful to pin down the equilibrium interest rate.
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2. It would be reasonable to conjecture that household A still wants to save to smooth
consumption, but now there is no counterparty in the economy to absorb these
savings. Consequently, A is also forced to consume its endowment so that cA

1 =
yA

1 = 3 and cA
2 = yA

2 = 1. However, unlike B, household A had no intention to
borrow in the unconstrained problem, so λA

a = 0.

Under these assumptions, we can use A’s Euler equation to find the equilibrium interest
rate just like in the “shortcut” approach:

1
yA

1
= (1 + r)

1
yA

2
=⇒ r =

yA
2

yA
1
− 1

To support this equilibrium allocation, we require that

r =
1
3
− 1 = −2

3
≈ −66.7%

As a last step, we need to verify whether household B is borrowing constrained given
the equilibrium interest rate, as initially conjectured. Plugging into B’s Euler equation,
we find that

1
cB

1
= (1 + r)

1
cB

2
+ λB

a =⇒ 1
1
=

(
1 − 2

3

)
1
3
+ λB

a

=⇒ 1 =
1
9
+ λB

a

=⇒ λB
a =

8
9
> 0

To summarise, we assumed that B would want to borrow if allowed, used this to find
the equilibrium interest rate r, and verified that at that interest rate, B would indeed
want to borrow because the Lagrange multiplier on the borrowing constraint is positive.

Figure 1.3 illustrates this equilibrium graphically and contrasts it with what we found
in Example 1.2. Note that the budget line now has a kink at the period-1 income which
arises due to the lack of borrowing opportunities, and the indifference curves indicate
that both households are worse off. While we did allow for saving, no household chose
to do so at the prevailing interest rate. The resulting equilibrium allocation is called
autarky because each household just consumes its endowment and does not trade with
others.

■

1.3 Aggregation

We now turn to the issue of aggregation: can the equilibria discussed in Example 1.2 and
Example 1.3 be modelled using a representative agent? It turns out that this is true in
one case, but not in the other.

12



0 yA
1

Consumption in t = 1

0

yA
2C

on
su

m
pt

io
n 

in
 t

=
2

Borrowing
No borrowing

1

2

(a) Type A

0 yB
1

Consumption in t = 1

0

yB
2

C
on

su
m

pt
io

n 
in

 t
=

2

Borrowing
No borrowing

1

2

(b) Type B

Figure 1.3: Equilibrium for Example 1.3 without borrowing. 1 shows the unattainable allocation
with borrowing, while 2 is the new autarky allocation. The thick black line depicts
the budget line without borrowing, the blue line the indifference curve with borrow-
ing, and the yellow line the indifference curve without borrowing.

Example 1.4 (Aggregation with borrowing). Continuing with Example 1.2, we now
ask whether this economy aggregates. If we had a representative agent (RA) endowed
with the aggregate income, would we observe the same aggregate consumption and
interest rate in equilibrium?

Recall that aggregate income in this economy is given by Y1 = Y2 = 4. Assuming
that the representative agent has the same preferences, the household problem is the
same as in (1.4), so we know that the corresponding Euler equation is given by (1.9). As
the RA does not have any counterparty to trade with, we can immediately conclude
that in equilibrium aggregate consumption must be the same as aggregate income in
each period, hence C1 = Y1 = 4 and C2 = Y2 = 4. Plugging these values into the Euler
equation, we see that

1
C1

= (1 + r∗)
1

C2
=⇒ 1

Y1
= (1 + r∗)

1
Y2

=⇒ 1
4
= (1 + r∗)

1
4

The only r∗ that satisfies this equation is r∗ = 0, which is the same as in the hete-
rogeneous-agent economy in Example 1.2! We conclude that in the aggregate, both
quantities (Ct and Yt) as well as prices (r) are the same in the representative and the
heterogeneous-agent economies. If we are only interested in aggregates, we can conse-
quently model this economy using a representative agent. ■

Example 1.5 (Aggregation without borrowing). We now turn to aggregation if bor-
rowing is not allowed, as in Example 1.3. We again assume that a representative agent
(RA) solves (1.4) and has the same first-order conditions. Aggregate income is still given
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by Y1 = Y2 = 4. You’ll notice that everything here is identical to Example 1.4, so we
conclude that aggregate consumption is C1 = C2 = 4 and the equilibrium interest rate is
given by r∗ = 0.

However, recall that in the heterogeneous-agent economy we found that r = − 2
3 , so

r∗ ̸= r and this economy does not aggregate! ■

Aggregation usually fails if we in introduce some friction which prevents households
from smoothing consumption or fully insuring against idiosyncratic risk, such as the
borrowing limit imposed in Example 1.5. The presence of such frictions spawned a
huge literature on how to solve heterogeneous-agent models using numerical methods
towards the end of the 1980s, with seminal early contributions including Bewley (1977),
Imrohoroğlu (1989), Huggett (1993), Aiyagari (1994) and Krusell and Smith (1998).

So far, we have only discussed heterogeneity on the household side. However, the
same questions can be raised about the supply side of the economy, i.e., to firms. Do
we lose important insights if we assume a single representative firm, as opposed to
a distribution of firms which differ in size or productivity? There is a big literature
investigating how frictions on the firm side (e.g., financial frictions such as access to
credit) affect aggregate outcomes (see, for example, Khan and Thomas, 2008, 2013). We
won’t be concerned with production in this part of the course, so we’ll illustrate this
topic with a single example.

Example 1.6 (Firm aggregation). Consider a firm with a standard Cobb-Douglas
production function, Y = F(K, L) = KαL1−α, which takes the interest rate r and wage
rate w as given. The firm maximizes profits,

Π = KαL1−α − rK − wL ,

by choosing the optimal values of K and L. The first-order conditions state that the
profit-maximising K and L must satisfy

r = α

(
K
L

)α−1

(1.24)

w = (1 − α)

(
K
L

)α

(1.25)

The above equations pin down the optimal ratio K/L but not K or L individually: if a
firm optimally chooses some K and L, then λK and λL for some positive λ also satisfy
(1.24) and (1.25)! This result follows from the fact that the Cobb-Douglas production
function is constant returns to scale, i.e., it satisfies the property

F(λK, λL) = λY

for any value of λ.
We can now see why aggregation holds with an arbitrary number of firms. Imagine

two firms, A and B, one with KA and LA such that KA/LA satisfies (1.24) and (1.25), and
a second firm which chooses KB = 2 · KA and LB = 2 · LA instead, which also satisfies
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the first-order conditions. The first firm produces F(KA, LA) = YA, while the second
firm’s output is F(2 · KA, 2 · LA) = 2 · YA.

Alternatively, instead of two firms, we could represent the production side of the
economy by a single firm which employs K = 3 · KA and L = 3 · LA and thus produces
F(3 · KA, 3 · LA) = 3 · YA. This setup yields exactly the same output, uses the same
amount of inputs and has the same equilibrium prices r and w! If we are not interested
in the firm size distribution per se, we can therefore model a single representative firm
without loss of generality! ■

1.4 Measures of inequality

In the preceding section, we established that the distribution of income across households
can matter for aggregate outcomes. Moreover, we might be interested in questions about
inequality in their own right, for example if we are devising policies to alleviate poverty.
To this end, it is instructive to examine the empirical evidence that documents the extent
of inequality in consumption, income, and wealth. Before we look at the data, however,
we need to familiarise ourselves with the central measures used to quantify inequality.

1.4.1 Lorenz curve and Gini coefficient

Probably the most widely used way to characterize inequality is to report the Gini
coefficient of some distribution, e.g., of income or wealth. Intuitively, the Gini represents
how far this distribution deviates from perfect equality, so a Gini of 0 says that each
person has the same income or wealth, whereas a Gini of 1 implies that everything is
owned by one individual.6

Usually, we define the Gini coefficient in terms of the Lorenz curve, as shown in
Figure 1.4. This graph is generated by ordering all individuals (or households) in terms
of the variable we are interested in, starting with the most disadvantaged. On the y-axis
we plot the cumulative share of resources owned by the bottom x of the population.
In the example shown in the figure, the bottom 25% (the first quartile) jointly own 6%,
while the first three quartiles together have 56%. The Gini coefficient can be computed
using the size of the areas marked A and B in the figure using the formula

G =
A

A + B
= 2A = 1 − 2B . (1.26)

The two alternative expressions follow because A+ B = 1
2 since these areas cover exactly

half of the 1 × 1 square. The two extreme cases with G = 0 and G = 1 are shown in
Figure 1.5.

6In most cases, the Gini can take on values between 0 and 1. However, if the variable of interest can be
negative (such as net worth, i.e., gross assets minus debt), the Gini can be larger than 1.
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Figure 1.4: Lorenz curve and graphical representation of the Gini coefficient, which is given by
G = A/(A + B) = 2A = 1 − 2B. In this example, the lower quartile owns 6% of
resources, while the first three quartiles own 56%.
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Figure 1.5: Lorenz curve and Gini for the extreme cases of “perfect” equality and inequality.

Be sure to plug the values for A and B into (1.26) to verify that the Gini evaluates to
G = 0 in the left case and to G = 1 on the right!

To get a better feeling for these inequality measures, we next look at two simplified
examples that nevertheless reflect the distribution of household income and wealth in
the United States.

Example 1.7. Consider the following economy consisting of five households with
income distributed as shown in Table 1.1.
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Household Income in $ Share Cumulative share

1 15,750 3.0% 3.0%
2 35,650 6.7% 9.7%
3 58,950 11.1% 20.8%
4 96,790 18.2% 39.0%
5 324,090 61.0% 100.0%

Table 1.1: Hypothetical income distribution for economy of five households.

This closely matches the average family income by income quintile in the Survey of
Consumer Finances for the United States in 2019.7 Figure 1.6 show the Lorenz curve for
this economy. The Gini is approximately 0.51, which comes reasonably close to the
actual value for the US income distribution.
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Figure 1.6: Lorenz curve and Gini for income distribution in example Example 1.7.

■

Example 1.8. Assume that the economy is populated by four households with wealth
holdings shown in Table 1.2.

Household Wealth in $ Share Cumulative share

1 −13,630 −0.5% −0.5%
2 58,180 1.9% 1.5%
3 236,280 7.9% 9.4%
4 2,706,290 90.6% 100.0%

Table 1.2: Hypothetical wealth distribution for economy of four households.

7See https://www.federalreserve.gov/econres/scf/dataviz/scf/chart/ for the original data and
details.
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This closely matches the average household net worth (gross assets minus debt) by
quartile in the Survey of Consumer Finances for the United States in 2019. Figure 1.7 shows
the Lorenz curve for this economy. The Gini is approximately 0.7, which is below the
true value for the US as this simple economy does not adequately capture the wealth
concentration at the very top. Moreover, because the lowest quartile has negative net
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Figure 1.7: Lorenz curve and Gini for wealth distribution in example Example 1.8.

worth (i.e., more debt than assets), the Lorenz curve is initially decreasing and below
zero! ■

1.4.2 Other measures

A distribution is a high-dimensional object, so there is no unique way to summarise it
in a single number such as the Gini. There are a few additional measures of inequality
used in the literature which we mention briefly. These measures differ in how sensitive
they are to changes in specific parts of the distribution.

For example, the variance of logs is computed as the variance of an empirical distri-
bution after taking the logarithm (the variance is a measure of dispersion around the
mean). Unlike the Gini, the variance of logs is not very sensitive to changes at the top of
the distribution because the logarithm compresses these values.

Other frequently-reported measures are the 90-10, 90-50 and 50-10 ratios. These
measure the relative distance between two percentiles of a distribution. For example,
the 90-10 ratio quantifies how much larger the 90th percentile is compared to the 10th

percentile. If the 90-10 ratio for income is 5, this means that a household at the 90th

percentile of the income distribution earns five times as much as the household at the 10th

percentile. These three ratios together allow us to get a more disaggregated picture of
inequality, whereas the Gini does not. For example, if the 90-50 ratio increased while the
50-10 remained the same, we can conclude that inequality remain roughly unchanged in
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the bottom half of the distribution whereas the top decile did better than the median.

1.5 Inequality in the data: some facts for macroeconomists

To motivate our discussion of heterogeneity in macroeconomics, we need to go beyond
aggregate time series (for GDP, aggregate consumption, etc.) and use micro data to
document differences across households along various dimensions such as consumption,
income, or wealth. Appendix 1.1 lists some of the most important publicly available
socio-economic data sets for the US and UK which can be used for such an exercise. The
next section present some of the findings obtained from these data.

1.5.1 Inequality in the United States

Income and wealth inequality

We start by looking at the evolution of the income and wealth distribution in the US
over time. Figure 1.8 shows how the Gini coefficient for each of these variables changed
since the 1950s. The data comes from the Survey of Consumer Finances (SCF) and its
precursors and was compiled by Kuhn, Schularick, and Steins (2020). You might have
read newspaper reports about the earnings polarization and the increase in income
inequality over the past decades; this is documented in Figure 1.8 panel (a), which shows
a rise of the income Gini from 0.43 in 1971 to 0.58 in 2016. Panel (b) shows the wealth
Gini, which was u-shaped over the post-war period but mostly hovered around a value
of 0.8. As you can see, wealth is substantially more unequally distributed than income!
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Figure 1.8: Gini for gross household income (including transfers) and household net worth in
the US, 1950–2016. Data source: Kuhn, Schularick, and Steins (2020, Table E.5)

One disadvantage of the Gini is that it does not make apparent how exactly income or
wealth is distributed, other than that the distribution is more or less equal. For example,
we could have economies that are unequal because the top earners are disproportionately
rich, or because the wealth-poor have high levels of debt. These two economies could
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Figure 1.9: Shares of income and wealth in the US, 1950–2016. The left panel shows the shares of
aggregate income going to the bottom 50%, the middle class (50%–90%) and the top
10% of income earners. The right panel shows share of aggregate wealth holdings,
and the population is now partitioned by wealth, i.e., the bottom group refers to the
50% of households with the lowest wealth. Data source: Kuhn, Schularick, and Steins
(2020, Table E.4)

potentially give rise to the same Gini coefficient. Consequently, we often want to look
at more disaggregated statistics such as the income and wealth shares held by various
groups, as illustrated in Figure 1.9. Panel (a) depicts the evolution of income shares in
the US over the last decades and highlights the increasing concentration at the top: the
10% income richest were able to increase their share of aggregate income from 35% to
almost 48% in 2016 at the expense of both the middle class and the bottom 50%. Panel (b)
plots the corresponding time series for wealth: in line with our observations for the Gini,
we again see that wealth is much more concentrated, with the richest 10% of households
owning around 75% of all wealth in the US.

Another approach to assess how different groups are doing over time is to look at
their income or wealth growth. This is accomplished in Figure 1.10. In each panel, the
real income or wealth of each group is normalised to a value of one in 1971, so we can
read off the growth that each group experienced. For example, panel (a) shows that
the bottom 50% saw no income growth between 1971 and 2007, since their normalised
income was approximately one at both points in time. On the other hand, the top 10%
saw their real income more than double in the same period!

Turning to wealth accumulation, from Figure 1.10 panel (b) we see that all groups
experienced similar growth until the Great Recession of 2007, but their wealth holdings
fared very differently thereafter: the bottom 50% saw a rapid decline that wiped out
almost all gains over the past decades! This highlights the importance of taking into
account household heterogeneity when quantifying the cost of business cycles.

What caused these large differences in wealth trajectories after the Great Recession?
Kuhn, Schularick, and Steins (2020) and others argue that the underlying reason are
differences in portfolios along the wealth distribution. This is illustrated in Figure 1.11
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Figure 1.10: Income and wealth growth for the bottom 50%, the middle class (50%–90%) and the
top 10% of the wealth distribution. All time series are normalised to one in 1971. The
dashed vertical line in 2007 shows the Great Recession. Source: Kuhn, Schularick,
and Steins (2020, Figure 12)

which plots the average portfolios for selected groups of households. It is evident that
there is substantial portfolio heterogeneity along the wealth distribution: for the bottom
50% in panel (b), the most important asset is housing (which is financed by a mortgage),
whereas the top 10% in panel (d) have substantial holdings of equities and businesses.
Because house prices collapsed after 2007, the bottom 50% with their leveraged real
estate suffered disproportionately more than other groups.

Consumption and leisure inequality

So far, we discussed the distribution of income and wealth. However, economists for the
most part believe that welfare depends on consumption and leisure but not directly on
income or wealth — recall that our utility function is usually written as u(c) or u(c, ℓ).

Consumption differs from income for a variety of reasons: households save part of
their income, they pay taxes and receive government transfers, or they may receive
transfers from family members. Because households can to some extent insure them-
selves against adverse income shocks via savings (or credit), and since the tax and
transfer system redistributes to income-poor households, consumption ends up being
more equally distribution than income or wealth. However, there is some disagreement
about the trends in consumption inequality: earlier studies such as Krueger and Perri
(2006) found that consumption inequality did not increase nearly as much as income
inequality over the last decade. More recent literature, on the other hand, concludes
that consumption and income inequality track each other closely (see Attanasio and
Pistaferri (2016) for a survey).

As an example, Figure 1.12 documents this increase in food consumption inequality
by plotting the log difference between the 90th and 10th percentile of the consumption
distribution in the US over time. Looking at the red line, we see that the difference was
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Figure 1.11: US household portfolios of different groups along the wealth distribution. Assets
are shown as shaded areas above the zero line while liabilities are displayed as
negative values. The red dashed line depicts the net worth (assets minus debt).
Panel (a) shows the average portfolio across all households, panels (b), (c) and (d)
the portfolios for the bottom 50%, the middle class and the richest 10%, respectively.
All values are reported in 10,000 USD at 2016 prices. Source: Kuhn, Schularick, and
Steins (2020, Figure 14)

approximately 1.2 log points in 1977, so that

log c90 − log c10 ≈ 1.2 (1.27)

which means that the consumption expenditures of a household at the 90th percentile
were more than 3 times higher than those of a household at the 10th percentile (c90/c10 ≈
exp(1.2) ≈ 3.3).8 By 2012, this wedge increased to approximately 1.6 log points or a
factor of 5! Of course, spending on food does not fully capture the actual quantity of

8Economists like to use log differences because these approximate the relative difference of two quantities
x and y, i.e., x−y

x ≈ log x − log y. However, this approximation only works if x and y are close, and it
fails miserably in cases such as (1.27) where the true difference is 230%, not 120% as suggested by the
approximation.

22



Figure 1.12: Difference between the 90th and the 10th percentiles of distribution of the logarithm
of food consumption, 1977–2012. Source: Attanasio and Pistaferri (2016, Figure 2),
based on PSID data.

food consumed: for example, eligible households in the US receive food stamps which
do not show up in spending, so food expenditure alone would overstate inequality in
food consumption. Nevertheless, even after accounting for such in-kind transfers (see
the blue line in Figure 1.12), the increase in consumption inequality remains.

Another way to quantify consumption inequality is to look at at ownership rates of
durable goods such as cars or home appliances, as shown in Figure 1.13. As the panels
illustrate, ownership rates of durable goods across the bottom and top income deciles
converged for some categories, but remain quite different for others such as cars. For
example, among the 10% of highest income earners, more than 90% report owning car,
while this is true for only 70% of the bottom 10%.

Turning to leisure, Figure 1.14 shows the trends in leisure time by gender and edu-
cational attainment. In principle, we might think that households can choose between
two allocations: high consumption financed by supplying labour, and low consumption
that comes with additional leisure. This is one possible interpretation of the data in
Figure 1.14 which shows that men who did not complete high school (and are thus more
likely to have low income) enjoy 10–15 more hours of leisure per week compared to
college-educated men. However, this increased leisure might not be entirely voluntary,
as this group most likely lacks the job market opportunities of the college educated!
Attanasio and Pistaferri (2016) point out that this leisure gap is smaller when the sample
includes only the employed, so part of this difference is attributable to differences in
(in)voluntary unemployment or retirement across education groups.
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Figure 1.13: Ownership rates for selected durables for top and bottom after-tax income deciles.
Source: Attanasio and Pistaferri (2016, Figure 3), based on CEX.

Figure 1.14: Total leisure hours per week, defined as the sum of social activities, active and
passive leisure, and time devoted to personal care (which includes sleeping). Source:
Attanasio and Pistaferri (2016, Figure 4), based on US time use data.
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1.5.2 Inequality in the United Kingdom

As documented in Belfield et al. (2017), income inequality has been on the rise in the
UK over the last decades as well, even though the UK and the US have seen somewhat
different trajectories since the 1990s. As shown in Figure 1.15, there was a pronounced
increase in the 1970s and 1980s: the income Gini increased from 0.26 in 1980 to 0.34 in
1990. This increase was in part due to rising wage inequality because of skill-biased
technical change (i.e., some occupations benefiting from technological progress more
than others), but also due to weaker trade unions and regressive changes to the tax and
transfer system.

Thereafter, income inequality remained broadly constant, except for the upper tail of
the income distribution where top earners were able to increase their share of income.
However, judging by the 90-10 percentile ratio, income inequality actually decreased
for large parts of the income distribution (see the 90-10 ratio in Figure 1.15), contrary
to what we observed in the US in that time period. One reason for this development
were changes to the tax and benefit system introduced in the later parts of the 1990s, in
particular in the form of cash transfers which were targeted towards the poorer half of
working households.

Figure 1.15: The Gini coefficient and the 90-10 ratio of net household income (adjusted for
household size) in Great Britain, 1961–2014. Source: Belfield et al. (2017, Figure 2)

It is insightful to look at how income inequality is mitigated via the tax and transfer
system, which is shown in Figure 1.16 for UK households. Gross income (black line) is
the most unequally distributed, whereas this inequality is dampened by the progressive
tax system (red line) and public transfers (pink line). Finally, disposable income (green
line), which might additionally include intra-family transfers, shows the lowest levels of
inequality.

Blundell and Etheridge (2010) provide numerous additional graphs documenting
various dimensions of inequality in the UK, including consumption inequality.
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Figure 1.16: Change in inequality when moving from gross income to disposable income. Source:
Blundell and Etheridge (2010, Figure 4.4), based on FES data

1.6 Main takeaways

In terms of modelling, we introduced three new concepts in this unit:

1. We studied how to solve simple general-equilibrium models with heterogeneous
agents where heterogeneity was restricted to two types of households.

2. We introduced the concept of constrained optimisation in the form of household
problems with borrowing constraints. Solving such problems adds additional com-
plications since we need to check whether a constraint is binding in equilibrium.

3. We discussed the concept of aggregation, i.e., whether an economy with heteroge-
neous agents yields the same aggregate quantities and prices as a representative-
agent economy.

We found that borrowing constraints are one reason why aggregation fails.

Additionally, we covered empirical evidence on inequality in the UK and US, which
can be summarised as follows:

1. Ranked in terms of inequality, wealth is the most unequally distributed resource,
followed by income and consumption.
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2. Redistributive taxes and transfers mitigate some of the income inequality, so
disposable income is more equally distributed than pre-tax income.

3. Income inequality has increased over the last decades, and more strongly in the
US than the UK. There is some evidence that this was accompanied by an increase
in consumption inequality.

4. We use multiple statistics to quantify inequality: the Gini coefficient, the variance
of logs, or the 90-10, 90-50 or 50-10 percentile ratios. Each of these highlights
inequality in some part of the distribution, but may be less sensitive to other parts.
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Appendix 1.1: Micro data for the US and UK

To study inequality, we need to go beyond aggregate times series (such as GDP, aggregate
consumption, etc.) and use data on individuals or households. These come in two broad
varieties: panel (or longitudinal) data follow the same respondents for a prolonged
period of time (often decades), while (repeated) cross-sections draw a new sample of
individuals or households every time a survey is administered. A rotating panel is a
hybrid variant which interviews the same respondent for a limited number of times
(say 2–4 times in consecutive months or quarters), but thereafter brings in a new set of
individuals or households.

US data sets

Some of the most important publicly available data sets to study inequality (and other
issues) in the US are the following:

1. The Current Population Survey (CPS) is more-or-less a repeated cross-section of
households collected at monthly frequencies by the US Census Bureau (strictly
speaking, the CPS is a very short panel because each household is interviewed
twice). It is frequently used to compute labour-market statistics such as the US
unemployment rate.9

2. The Panel Study of Income Dynamics (PSID) was started in 1968 and is the longest-
running longitudinal household survey in the world. Initially, it interviewed 5,000
families every year, but switched to a biennial frequency in 1997. It is administered
by the University of Michigan.10

3. The Health and Retirement Study (HRS) is a panel data set of predominantly elderly
households (aged 50 or older). In addition to income and wealth, it contains a
multitude of variables which are particularly relevant for studying old age, such as
health and medical information. It is administered by the University of Michigan.11

4. The Survey of Consumer Finances (SCF) is a survey administered as a repeated
cross-section every three years. It attempts to oversample rich household so that it
is better-suited to answer questions of wealth inequality than most other data sets.
The survey is run by the US Federal Reserve.12

5. The Consumption Expenditure Survey (CEX) collects data on households’ consump-
tion of non-durables and selected durables (such as cars) in the US since 1980.
Households are interviewed for four consecutive quarters, so this survey is admin-
istered as a rotating mini-panel. It is run by the US Bureau of Labor Statistics.13

9https://www.census.gov/programs-surveys/cps.html
10https://psidonline.isr.umich.edu/
11https://hrs.isr.umich.edu/about
12https://www.federalreserve.gov/econres/scfindex.htm
13https://www.bls.gov/cex/
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UK data sets

Similar data sets exist for the United Kingdom, for example:

1. The British Household Panel Survey (BHPS) is a longitudinal survey that interviewed
households annually between 1991–2008.14

2. The Understanding Society study, or the United Kingdom Household Longitudinal
Study (UKHLS), is a longitudinal survey that replaced the BHPS in 2009.15

3. The Labour Force Survey (LFS) collects data on labour market and employment
outcomes. It started as a biennial survey in 1973, but has by now transitioned to a
quarterly frequency which contains a short rotating panel of 5 quarters.16

4. The Family Resources Survey (FRS) is a repeated cross-section administered annually
by the UK government and contains about 20,000 households each financial year.
It surveys all income received by households as well the amount of direct taxes
paid.17

5. The Living Costs and Food Survey (LCF) collects data on spending patterns and
the cost living in the UK. From 2001–2008, this data was collected as part of the
Expenditure and Food Survey (EFS), which itself superseded the Family Expenditure
Survey (FES) that collected such data from 1957–2001.18
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Exercises

Exercise 1.1 (General equilibrium with discounting). Consider the setting in Example
1.1, but now assume that the household discounts period-2 utility with β ∈ (0, 1). The
household problem is given by

max
c1, c2, a2

log(c1) + β log(c2) (E.1)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

Assume that the household can freely borrow or save between the two periods.

(a) Consolidate the per-period budget constraints into a single present-value lifetime
budget constraint.

(b) Set up the Lagrangian for this problem and derive the first-order conditions. Use
these to obtain the household’s Euler equation.

(c) Use the Euler equation and the budget constraint to solve for optimal consumption
(c1, c2) as a function of the interest rate, income and parameters.

(d) As in Example 1.2, assume that the economy is populated by two households, A
and B, with the following income streams:

yA
1 = 3, yA

2 = 1

yB
1 = 1, yB

2 = 3

Use the optimal consumption rules you found to determine the equilibrium interest
rate as function of income and parameters.

(e) Assume that the discount factor is given by β = 0.8. Compute the equilibrium
interest rate!

(f) Comment on the magnitude of equilibrium r compared to what we found in
Example 1.2. Explain the effect of lowering β from 1 to 0.8!

(g) Extend the graphs in Figure 1.2 to include the equilibrium for β = 0.8.

Exercise 1.2 (Representative-agent with CRRA preferences). Consider the following
two-period representative-agent problem,

max
c1, c2, a2

u(c1) + βu(c2) (E.2)

s.t. c1 + a2 = y1 (E.3)
c2 = (1 + r)a2 + y2 (E.4)

31



where u(•) is the CRRA utility function

u(c) =
c1−γ

1 − γ

and γ ̸= 1 is a parameter governing the curvature. The household receives income yt in
period t and can choose to save or borrow in the first period.

(a) State the Lagrangian for this maximisation problem. You can either eliminate all
choice variables other than a2 or keep all three choice variables and include the
constraints (E.3) and (E.4).

(b) Derive the optimality condition for this problem. Irrespective of how you chose to
set up the Lagrangian, you should eventually end up with an Euler equation.

(c) Find an expression for the equilibrium interest rate as a function of income and
parameters. To do this, recall that in this representative-agent economy, there is no
way to save or borrow in equilibrium, and therefore the representative agent has
to consume its endowment in each period. Find the interest rate that supports this
allocation!

(d) Intuitively explain how the equilibrium interest rate depends on the discount
factor β and the ratio of second- to first-period income, y2/y1.

(e) Assume that β = γ = 1 and consider three different scenarios for income:

Scenario y1 y2 r

A 3 1 ?
B 1 3 ?
C 2 2 ?

Compute the equilibrium interest rate for each scenario and plot the equilibria in a
graph with c1 and on the x-axis and c2 on the y-axis. Include both the budget lines
and indifference curves, and clearly label all elements!

Exercise 1.3 (General equilibrium with limited borrowing). Consider the following
household problem:

max
c1, c2, a2

log(c1) + log(c2) (E.5)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

a2 ≥ −b (E.6)

The household is able to borrow funds in period 1, but only up to an amount b, the
borrowing limit, as shown in the constraint (E.6).
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(a) Write down the Lagrangian for problem (E.5), including both per-period budget
constraints and the borrowing constraint (E.6).

(b) Take the first-order conditions with respect to c1, c2 and a2. Consolidate all three
conditions into a single Euler equation.

(c) Assume there are two households, A and B, in this economy with income given by

yA
1 = 3, yA

2 = 1

yB
1 = 1, yB

2 = 3

Furthermore, let the borrowing limit be b = 1.

Use a “guess and verify” approach to find the equilibrium: you suspect that
both households can perfectly smooth consumption like in Example 1.2, so you
conjecture that B will borrow up to the borrowing limit, and A will supply the
necessary savings. Use this conjecture to determine the equilibrium interest rate.

(d) Plot the equilibrium allocation for A and B in a graph with c1 and on the x-axis
and c2 on the y-axis. Include both the budget lines and indifference curves, and
clearly label all elements (create a separate graph for each household).

Exercise 1.4 (Aggregation with heterogeneous preferences). Consider an economy
with three different households indexed by i = A, B, C which solve the following
consumption-savings problem:

max
c1, c2, a2

ui(c1) + βui(c2) (E.7)

s.t. c1 + a2 = a1 + y1

c2 = (1 + r)a2 + y2

Each household is assumed to receive the same endowment (y1, y2) and can borrow
freely. Assume that the per-period utility depends on the household type and is given
as follows:

uA(c) =
c1−γ

1 − γ

uB(c) =
c1−γ

1 − γ
+ 100

uC(c) = 2 · c1−γ

1 − γ

(a) Derive the Euler equation for each household.

(b) Does this economy aggregate, i.e., can it be modelled as a single representative
household? Compare the optimality condition you found above to find the answer!
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Exercise 1.5 (Properties of inequality measures). Consider the following income distri-
bution:

Household Income in £

1 10,000
2 20,000
3 30,000
4 40,000
5 100,000

(a) Compute the cumulative income shares along the income distribution, i.e., the
share of aggregate income received by the first n households for n = 1, 2, . . . , 5.

(b) Use this data to plot the Lorenz curve for this economy.

(c) Assume that the income of each household is multiplied by a factor of 10. What
happens to income inequality in this economy?

Exercise 1.6 (Ranking distributions). Consider four different economies with the fol-
lowing distributions of income:

Household Economy

1 2 3 4

1 0 20 0 10
2 0 40 0 20
3 200 60 0 30
4 200 80 100 40

(a) Plot the Lorenz curves for all four economies.

(b) Rank these economies in terms of their inequality. You can infer this directly from
the table or by looking at the Lorenz curves.

Exercise 1.7 (Inequality with taxes and transfers). Consider the following distribution
of gross income:

Household Gross income

1 5
2 10
3 15
4 50

Table E.1: Distribution of gross income

(a) Compute the cumulate shares of gross income.
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(b) Assume that the government introduces a progressive tax schedule given by

T(y) = y − y1−τ

where y is pre-tax income, T(y) is the tax liability, and ỹ = y − T(y) is the after-
tax income. Let τ = 0.18, which was found to be a good approximation to the
progressivity of the US tax system.19

Apply this tax schedule to the gross income distribution tabulated in Table E.1 and
compute the (cumulative) shares of after-tax income!

(c) Assume that a pandemic hits the original economy (without taxes), and the gov-
ernment distributes one unit of income to each household as an unconditional
cash transfer.

Compute the post-transfer (cumulative) income shares for the distribution from
Table E.1.

(d) Using your calculations from above, plot the Lorenz curves for all three scenarios.
How do progressive taxes and cash transfers affect inequality in this economy?

19See Jonathan Heathcote, Kjetil Storesletten, and Giovanni L. Violante (2017). “Optimal Tax Progressivity:
An Analytical Framework”. In: The Quarterly Journal of Economics 132.4, pp. 1693–1754.
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2 Consumption over the life cycle

2.1 Introduction

In this unit, we explore one simple reason for heterogeneity in household decisions:
differences in age. The so-called life cycle model of consumption and savings explains
why households make distinct decisions at different points in time, for example because
they face age-dependent income (or no income in retirement).

Before studying the full model, we first examine how households adapt their intertem-
poral consumption choices in response to interest rate changes in a two-period setting.
We decompose such responses into an income, wealth and substitution effect, and the
latter will depend on the elasticity of intertemporal substitution which nicely ties into CRRA
preferences.

Once this ground work is done, the two-period model can be naturally extended to
many periods. The predictions of such a richer model can then be compared to age
profiles of consumption and savings observed in the data.

2.2 Income, substitution and wealth effects

2.2.1 Log preferences

Let’s begin with our standard example, the two-period consumption-savings problem
with log preferences. For now, we additionally assume that the household only receives
income in the first period. The maximisation problem is as follows:

max
c1, c2, a2

log(c1) + β log(c2) (2.1)

s.t. c1 + a2 = y1 (2.2)
c2 = (1 + r)a2 (2.3)

We can consolidate the per-period budged constraints (2.2) and (2.3) to form the present-
value lifetime budget constraint (LTBC)

c1 +
c2

1 + r
= y1 , (2.4)

which states that discounted lifetime consumptions is equal to the period-1 endowment
y1. We derived the Euler for this problem in the previous unit, which is given by

1
c1

= β(1 + r)
1
c2

. (2.5)
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Figure 2.1: Substitution and income effects of an increase in r for a lender with log preferences
and no second-period income. Point A depicts the optimum at the initial interest rate
located on the associated indifference curve with utility u. B shows the allocation
at the new interest rate which yields the same utility level. C is the new allocation
once the total effect is taken into account, with the yellow line showing the new
indifference curve with utility u′.

Solving for c2 = β(1 + r)c1 and substituting into the lifetime budget constraint, we find
the optimal consumption level in period 1:

c1 =
1

1 + β
y1 (2.6)

Plugging this back into the Euler equation, optimal consumption in period 2 is given by

c2 =
β

1 + β
(1 + r)y1 . (2.7)

For example, if we set β = 1 and r = 0, (2.6) and (2.7) imply that the household consumes
exactly half of its initial endowment in each period, as expected.

We are now in a position to ask the following question: how does the household
respond to changes in r? From (2.6) we see that consumption in the first period does not
respond at all as it is not a function of r! This might not be particularly surprising if you
recall from your earlier studies that the substitution and income effects exactly cancel
out with log preferences.

Figure 2.1 shows the intuition behind the result: if the interest rate increases, the
relative price of period-1 consumption increases — recall that the price of period-1
consumption in terms for period-2 consumption is (1 + r). The resulting substitution
effect (SE) is defined as the change in demand when relative prices move while keeping
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the utility level constant. This is illustrated in panel (b) by tilting the budget line along
the indifference curve until its slope is −(1 + r′), reflecting the new interest rate r′.
As the slope changes, the cheaper c2 is substituted for c1. First-period consumption
consequently moves from c1 to cSE

1 , and the consumption bundle moves from A to B .1

That, however, is not the end of the story: since the household is a lender, it earns
higher interest income on its savings than before. Because c1 and c2 are normal goods,
demand for both increases compared to point B . This is called the income effect (IE).
Depending on preferences and whether the household is a lender (saver) or a borrower,
the overall effect on c1 might be ambiguous. However, in the case of a lender with
log preferences and no period-2 income, the SE and IE exactly cancel and c1 remains
unchanged, as shown in panel (c) at point C . Moreover, because in this example the
household is a lender, an increase in the interest rate makes it unambiguously better off,
as shown by the new indifference curve.

You might wonder why we eliminated second-period income in the preceding dis-
cussion. It turns out that the exactly offsetting substitution and income effects only
occur if wealth itself is not affected by the price change. However, if lifetime wealth
is distributed across multiple periods, its present value will respond to changes in the
interest rate. To illustrate, let’s return to our standard version of the two-period model
with income received in both periods.

Example 2.1 (Wealth effect with log preferences). Instead of a fixed endowment in the
first period as in (2.1), the household now receives income in both periods and solves

max
c1, c2, a2

log(c1) + β log(c2) (2.8)

s.t. c1 + a2 = y1 (2.9)
c2 = (1 + r)a2 + y2 (2.10)

In the present-value lifetime budget constraint, lifetime income on the right-hand side
now clearly depends on the interest rate:

c1 +
c2

1 + r︸ ︷︷ ︸
PV of lifetime cons.

= y1 +
y2

1 + r︸ ︷︷ ︸
PV of lifetime inc.

. (2.11)

The Euler equation is unchanged from (2.5). Substituting for c2 in the lifetime budget
constraint and solving for c1, we find that

c1 =
1

1 + β

[
y1 +

y2

1 + r

]
(2.12)

1The hypothetical demand schedule which represents demand as a function of relative prices at a constant
utility level is called Hicksian demand or compensated demand. As the word “compensated” implies, the
household is assumed to have been given the exact amount of resources required to attain the fixed
utility level. Because utility is unobserved and the household might not actually have enough resources
to purchase the consumption bundle, this demand function is “hypothetical.”
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Figure 2.2: Substitution and income effects of an increase in r for a lender with log preferences
and income in both periods. Point A depicts the optimum at the initial interest rate
located on the associated indifference curve with utility u. B shows the allocation
at the new interest rate which yields the same utility level. C is the new allocation
once the total effect is taken into account, with the yellow line showing the new
indifference curve with utility u′.

while in the second period, consumption is

c2 =
β

1 + β

[
(1 + r)y1 + y2

]
(2.13)

Looking at (2.12), we see that period-1 consumption is now unambiguously decreasing
in the interest rate due to the wealth effect. A higher interest rate decreases the present
value of period-2 income, an effect that was absent earlier. Previously we found that c1
remained unchanged, so now it must be the case that the household reduces demand for
all normal goods, including c1. This situation is illustrated in Figure 2.2. Panels (a) and
(b) are more-or-less unchanged from Figure 2.1, but in panel (c) period-1 consumption
at the new allocation is lower than its initial value.2

To summarise, we tabulate all three effects of an increase in r for a lender:

2There does not seem to be any agreement on the correct terminology to describe this scenario. Standard
microeconomics textbooks such Jehle and Reny (2011) define the income effect as the residual after the
substitution effect is accounted for, whereas Jappelli and Pistaferri (2017) explicitly mention the wealth
effect as the third term when decomposing interest rate changes.
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Decomposition ∂c1/∂r

Substitution effect < 0
Income effect > 0
Wealth effect ≤ 0 Depends on timing of income

Total effect ?

Table 2.1: Decomposition of change in lender’s period-1 consumption following an increase in r.

Because the individual effects have opposite signs, the total effect is indeterminate at
this level of generality and will depend on the exact numerical values used to solve the
household problem (for example, Figure 2.2 was created using β = 1, y1 = 3, y2 = 1,
r = 0 and r′ = 0.6). ■

2.2.2 CRRA preferences and the elasticity of intertemporal substitution

What determines the magnitude of the substitution effect between consumption in
periods 1 and 2 as the interest rate changes? Looking at the above figures, one would
conjecture that the propensity to shift consumption should be related to the curvature
of the indifference curve. With log preferences, we have limited scope to control this
curvature, and in fact we will see below that with this parametrisation, the elasticity of
intertemporal substitution is hardwired to be exactly one. To gain more flexibility, we
return to the more general class of CRRA preferences. Log preferences are a special case
within this class which arises if the coefficient of relative risk-aversion is set to one.

Example 2.2 (Consumption growth with CRRA preferences). Consider the following
problem of a household endowed with CRRA preferences who is allowed to save or
borrow between periods 1 and 2:

max
c1, c2, a2

c1−γ

1 − γ
+ β

c1−γ
2

1 − γ

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

The present-value life-time budget constraint is the same as in (2.11). We set up the
Lagrangian as usual,

L =
c1−γ

1
1 − γ

+ β
c1−γ

2
1 − γ

+ λ

[
y1 +

y2

1 + r
− c1 −

c2

1 + r

]
where λ ≥ 0 is the Lagrange multiplier for the lifetime budget constraint. The first-order
conditions with respect to c1 and c2 are

∂L
∂c1

= c−γ
1 − λ = 0 (2.14)

∂L
∂c2

= βc−γ
2 − λ

1
1 + r

= 0 (2.15)
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We solve (2.14) for λ = c−γ
1 and plug this into (2.15) to obtain the Euler equation for the

general CRRA case,
c−γ

1 = β(1 + r)c−γ
2 . (2.16)

You can easily verify that when setting γ = 1 in (2.16), we obtain the Euler equation for
the special case of log preferences we found in (2.5).

We can use (2.16) to say something about consumption growth c2/c1 between periods
1 and 2 as a function of parameters. To this end, rewrite the Euler equation (2.16) as

c2

c1
=
[
β(1 + r)

] 1
γ (2.17)

Since γ > 0, the above equation tells us that c2 > c1 whenever β(1 + r) > 1, and
conversely, c1 < c2 if β(1 + r) < 1.

There is a more elegant expression that relates the growth rate of consumption to
parameters. To derive it, recall the following approximation: if c1 and c2 are close, we
have

log(c2/c1) = log
(

1 +
c2 − c1

c1

)
≈ c2 − c1

c1

where the right-most term is the consumption growth rate. This follows because for x
close to zero, it holds that log(1 + x) ≈ x. Taking logs on both sides of (2.17), we have

c2 − c1

c1
≈ log(c2/c1) = log

([
β(1 + r)

] 1
γ

)
=

1
γ

[
log(1 + r) + log(β)

]
≈ 1

γ

[
r + log(β)

]
(2.18)

The last step follows since for small r we have log(1 + r) ≈ r. We can go one step further
if we define β ≡ 1

1+ρ , where ρ is the subjective discount rate, also called the rate of time
preference. Then

log(β) = log
(

1
1 + ρ

)
= − log(1 + ρ) ≈ −ρ

and we can write (2.18) as
c2 − c1

c1
≈ 1

γ

(
r − ρ

)
. (2.19)

The relation (2.19) is straightforward to interpret:

• If r > ρ, the market interest rate is higher than the households time preference rate,
and the households shifts consumption to period 2. Consumption growth must
therefore be positive.

• If r = ρ, the market discounts the future at exactly the same rate as the household,
so consumption growth is zero. We have that c2 = c1.
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• If r < ρ, the household discounts the future more heavily than the market and will
want to front-load consumption, hence the consumption growth rate is negative.

How strongly the household responds to the difference r − ρ is governed by 1
γ , which

we discuss next. ■

We are now in a position to quantify the willingness of a consumer to substitute
between consumption in periods 1 and 2. This willingness is captured by the elasticity
of intertemporal substitution which determines how relative consumption c2/c1 depends
on the interest rate. As economists, we prefer such a measure to be expressed as an
elasticity, i.e., we want to find the percent change in c2/c1 when (1 + r) changes by one
percent.

Recall that an elasticity is a unit-free measure which tells us by how many percent
some variable y changes if x changes by one percent, i.e.,

dy/y︸ ︷︷ ︸
% change in y

= Elasticity × dx/x︸ ︷︷ ︸
% change in x

We can rewrite this expression in various equivalent ways to compute the elasticity:

Elasticity =
dy/y
dx/x

=
dy
dx

x
y
=

d log y
d log x

The last equality follows if you recall that d log y = 1
y dy and is probably the most widely

used method to compute elasticities in economics.
Returning to our problem, we want to quantify the elasticity of relative consump-

tion with respect to interest rate changes, which we call the elasticity of intertemporal
substitution (EIS),3

EIS =
d log (c2/c1)

d log(1 + r)
. (2.20)

We need to evaluate this quantity at the optimally chosen consumption bundle (c1, c2)
which satisfies the Euler equation (2.16). Taking logs on both sides of (2.16), we see that

log(c2/c1) = log
((

β(1 + r)
) 1

γ

)
=

1
γ

log
(

β(1 + r)
)

=
1
γ

log β +
1
γ

log(1 + r)

It is now straightforward to evaluate the elasticity in (2.20):

EIS =
d log (c2/c1)

d log(1 + r)
=

d
[

1
γ log β + 1

γ log(1 + r)
]

d log(1 + r)
=

1
γ

(2.21)

3Note that some authors call it the intertemporal elasticity of substitution (IES).
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Figure 2.3: Substitution effect of an increase in r for different values of the elasticity of intertem-
poral substitution (EIS). Point A depicts the allocation at the initial interest rate. B
shows the allocation at the new interest rate which yields the same utility level.

After all this work we can thus conclude that CRRA preferences are isoelastic — the
elasticity of intertemporal substitution is always the same, and it is given by the inverse
of the RRA parameter γ. What’s more, you now see why the EIS is always one for log
preferences where γ = 1.

Let’s illustrate this finding using three parametrisations for γ shown in Figure 2.3:

(a) When the EIS is low (or equivalently, γ is high), the substitution effect is not very
large, as illustrated in panel (a). The indifference curves have high curvature, so
a tilt in the slope of the budget line is accommodated by only a small movement
from point A to B .

(b) With log preferences, the EIS is always one. This case is depicted in panel (b).

(c) When the EIS is high (or equivalently, γ is low), the substitution effect is large. The
indifference curves have low curvature, so even a small change in r can move the
consumption allocation far from its initial level. This case is shown in panel (c).

There is another useful takeaway from the above exercise: the EIS also approximately
measures changes in consumption growth (c2 − c1)/c1 as r changes. This follows immedi-
ately from the approximation we derived in (2.19). Taking the derivative with respect to
r, we see that

d
(
(c2 − c1)/c1

)
dr

≈ 1
γ

(2.22)

This tells us that if the interest rate increases by one percentage point, consumption
growth between periods 1 and 2 increases by approximately 1

γ percentage points!
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Example 2.3 (Consumption responses to change in r for different EIS). Consider the
setting in Example 2.2 with CRRA preferences, and assume that the household receives
income y1 = 3 and y2 = 1. The discount factor is set to β = 1 and the interest rate in the
baseline scenario is r = 0.

We know that with this parametrisation, the household will perfectly smooth con-
sumption and choose c1 = c2 = 2 irrespective of the value of γ.

How does optimal consumption respond when the interest rate increases to r′ = 0.01?
We consider three different scenarios with γ = 2, 1, 1

2 , which correspond to an EIS of
1
γ = 1

2 , 1, 2, and solve the household problem for each parametrisation and interest rate.
Given that the gross interest rate (1 + r) increases by 1%, we know from (2.21) that

the ratio c2/c1 should increase by about 0.5%, 1% and 2% for these three EIS values.
Moreover, from (2.22) we know that consumption growth from period 1 to 2 should
increase by 0.5, 1 and 2 percentage points, respectively. The exact figures are reported in
Table 2.2, which are very close to what we’d expect given the EIS.

r c1 c2
c2
c1

%∆ c2
c1

c2−c1
c1 ∆ c2−c1

c1 × 100

EIS = 0.5 0.0% 2.000 2.000 1.000 – 0.00% –
1.0% 2.000 2.010 1.005 0.50% 0.50% 0.50

EIS = 1.0 0.0% 2.000 2.000 1.000 – 0.00% –
1.0% 1.995 2.015 1.010 1.00% 1.00% 1.00

EIS = 2.0 0.0% 2.000 2.000 1.000 – 0.00% –
1.0% 1.985 2.025 1.020 2.01% 2.01% 2.01

Table 2.2: Consumption responses to a 1% increase in the interest rate for different EIS values.
Columns c1 and c2 report the optimal consumption allocation for each interest rate
and EIS. Column %∆ c2

c1
shows the relative change in c2

c1
as the interest rate changes.

Column c2−c1
c1

lists the consumption growth between periods 1 and 2. The last column
shows how consumption growth responds to the change in r (in percentage points).

■

2.3 Life cycle model with many periods

So far, we have only dealt with two-period models. If we assume that the household
gets income only in the first period, this can be interpreted as a very stylised model
of a life cycle in which the household receives labour income during working age,
then retires and lives off its savings. Figure 2.4 depicts this situation, assuming that
the household perfectly smooths consumption across both periods. In period 1, the
household accumulates savings which are used to finance consumption in period 2.

In the previous example, we assumed that the agent lives until age T = 2. Of course,
we can extend this setting to something more realistic such as T = 60, where the agent
lives for 60 years (most economic models start at an age of around 20 since we are
usually interested to understand economic decisions of financially independent adults).
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Figure 2.4: Stylised two-period life cycle model. The household receives income only in the first
period, whereas consumption is perfectly smoothed across both periods (assuming
r = 0 and β = 1).

A stylised version of such a model which goes back to Modigliani and Brumberg (1954)
is shown in Figure 2.5, where we continue to assume that β = 1, r = 0 and additionally
impose a constant labour income throughout working age. Note that because of r = 0,
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Figure 2.5: Stylised 60-period life cycle model. Income is constant during working age and zero
in retirement.

the areas labelled “saving” and “dissaving” must be of equal size to satisfy the lifetime
budget constraint.

We formalise this model following the exposition in Jappelli and Pistaferri (2017,
chapter 1). Assume the household lives for T periods and receives income yt at age
t = 0, . . . , T − 1.4 For each t, it chooses consumption ct and the amount of assets at+1 to

4In multi-period settings the convention is to denote the initial point in time as t = 0. You can think of t as
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bring to the next period. For some initial asset level a0, the maximisation problem reads
as follows:

max
{ct, at+1}T−1

t=0

T−1

∑
t=0

βtu(ct) (2.23)

s.t. ct + at+1 = (1 + r)at + yt ∀ t (2.24)
aT ≥ 0, a0 given (2.25)

We additionally impose that the household cannot leave behind debt when it exists the
economy, hence aT ≥ 0.

We first want to consolidate the period-specific budget constraints (2.24) into a single
present-value lifetime budget constraint as we did for the two-period case. Intuitively,
we already know that it will state that lifetime consumption cannot exceed lifetime
wealth (initial assets + income). The formal derivation requires a few steps which we
relegate to appendix 2.1 since it’s a lot of algebra but adds little to our understanding of
the problem. We instead directly state the lifetime budget constraint which is given by

T−1

∑
t=0

ct

(1 + r)t︸ ︷︷ ︸
PV of cons.

= (1 + r)a0︸ ︷︷ ︸
Init. wealth

+
T−1

∑
t=0

yt

(1 + r)t︸ ︷︷ ︸
PV of income

(2.26)

The effective initial wealth is (1 + r)a0 instead of just a0 which looks unusual but does
not change the problem at hand.5

We are now ready to set up the Lagrangian, which is given by

L =
T−1

∑
t=0

βtu(ct) + λ

[
(1 + r)a0 +

T−1

∑
t=0

yt

(1 + r)t −
T−1

∑
t=0

ct

(1 + r)t

]
(2.27)

The first-order condition with respect to any ct is

∂L
∂ct

= βtu′(ct)−
λ

(1 + r)t = 0

To obtain the Euler equation, we need to eliminate λ using another equation, for example
the FOC for ct+1:

∂L
∂ct+1

= βt+1u′(ct+1)−
λ

(1 + r)t+1 = 0

Solving both of these for λ and setting them equal, we get

βt(1 + r)tu′(ct) = βt+1(1 + r)t+1u′(ct+1)

age, where the household enters the economy at (adult) age zero and exits the economy at the moment
it attains age T, so the last period of life starts at age T − 1.

5The budget constraint (2.24) for t = 0 reads c0 + a1 = (1 + r)a0 + y0, i.e., the household instantly earns
interest income on its initial assets. While this looks strange, it allows us to use the same notation as for
the two-period model.
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Dividing by βt(1 + r)t yields the final version of the Euler equation:

u′(ct) = β(1 + r)u′(ct+1)

This is the usual intertemporal optimality condition linking two adjacent periods t and
t+ 1 which generalises naturally from the two-period setting. Assuming that preferences
are CRRA, we get the familiar expression

c−γ
t = β(1 + r)c−γ

t+1 . (2.28)

Solving the remainder of the problem at this level of generality involves significant
amounts of algebra, so we again leave this to the appendix. Instead, we’ll look at the
special case of log preferences, constant labour income and retirement.

Example 2.4 (Simple model with retirement). Let’s consider the simplest multi-period
model of retirement which generates the income and consumption profiles illustrated in
Figure 2.5. Assume that the household lives for T periods, works for the first N periods,
receives a constant income y while working and starts with zero initial assets, a0 = 0.
We set β = 1 and r = 0 as this considerably simplifies the solution.

With this parametrisation, the Euler equation (2.28) reads

c−γ
t = β(1 + r)c−γ

t+1 =⇒ c−γ
t = c−γ

t+1 =⇒ ct = ct+1

for all t, thus consumption is identical in each period which we denote as ct = c.
Moreover, since there is no discounting, lifetime consumption is given by

T−1

∑
t=0

ct

(1 + r)t =
T−1

∑
t=0

c = Tc . (2.29)

Lastly, lifetime wealth becomes

(1 + r)a0 +
T−1

∑
t=0

yt

(1 + r)t =
N−1

∑
t=0

y = Ny . (2.30)

where we use the fact that income is zero for all t ≥ N. We can plug (2.29) and (2.30)
into the lifetime budget constraint (2.26) to solve for consumption:

T · c = N · y =⇒ c =
N
T

y (2.31)

The household thus consumes a constant fraction N
T < 1 of income while working

and saves the remaining fraction (1 − N
T ). It therefore accumulates assets over the life

cycle which are then used to finance consumption in retirement. This asset trajectory
is shown in Figure 2.6: intuitively, it peaks exactly in the period when the household
enters retirement, and approaches zero as the household comes closer to the terminal
period T − 1.
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Figure 2.6: Life cycle profiles of income, consumption and assets for model with log preferences,
r = 0 and β = 1. Dots indicate choices at each age.

■

While the previous example was not too difficult to solve, the complexity of these
solutions increases considerably if we abandon more and more of the simplifying
assumptions. One extension that can still be solved with reasonable amounts of work is
discussed next.

Example 2.5 (Life cycle with discounting). Continuing with the setting in Example
2.4, we now impose log preferences and discounting with β < 1, but keep the interest
rate at r = 0. The remaining parameters are unchanged.

The Euler equation linking consumption in two consecutive periods now becomes

c−1
t = βc−1

t+1 .

Rewriting this as ct+1 = βct, we can express consumption in t as a function of c0 by
repeated substitution:

ct = βtc0 . (2.32)

Substituting this into the right-hand side of the LTBC (2.26), we see that

T−1

∑
t=0

ct

(1 + r)t =
T−1

∑
t=0

βtc0 = c0

T−1

∑
t=0

βt = c0
1 − βT

1 − β

where the last step follows from the summation formula for the first T terms of a
geometric series (recall that β ̸= 1 which is a condition to apply this rule). The left-hand
side of the LTBC remains unchanged and is equal to (2.30). The LTBC thus reads

c0
1 − βT

1 − β
= Ny .
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We can solve for c0 to find

c0 =
1 − β

1 − βT Ny =
1

1 + β + β2 + · · ·+ βT−1 Ny (2.33)

For β = 1, the expression on the right-hand side is equal to N
T y and we are back to the

case we found in Example 2.4. For β < 1, we have that

c0 =
1

1 + β + β2 + · · ·+ βT−1 Ny >
1
T

Ny

so the more impatient household brings forward consumption to the first period. Con-
sumption in later periods can be obtained from (2.32).

Figure 2.7 plots the solution to this problem if we assume that T = 60, N = 45, y = 1
and β = 0.96. This discount factor is a standard value for macroeconomic models at
annual frequency. As you can see in panel (a), because the household is impatient
relative to the interest rate, it borrows in the first ≈ 15 periods of its life and starts saving
for retirement thereafter. Panel (b) shows the resulting asset profile over the life cycle.
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(b) Profiles for income, consumption and assets

Figure 2.7: Life cycle profiles of income, consumption and assets for model from Example 2.5
with log preferences, r = 0 and β = 0.96. Dots indicate choices at each age.
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■

It is usually instructive to check that a general solution like the one in Example 2.5
simplifies to a nested, more restrictive case. This also helps verify that our solution is
correct. For example, recall the problem from (2.1) which is identical to Example 2.5 if
we set T = 2 and N = 1. Inspecting the right-most expression in (2.33), we see that for
T = 2 and N = 1 it simplifies to

c0 =
1

1 + β
y

which is exactly the first-period consumption we found in (2.6).
At this point, it is not worthwhile to generalise the above framework further. While

it is possible to solve for CRRA preferences with γ ̸= 1 (see appendix), the resulting
analytical solution does not yield many additional insights. Most other extensions used
in macroeconomics and household finance have no closed-form solution at all but are
instead solved numerically on the computer. For the remainder of this section, we
therefore interpret the output generated from numerical solutions.

Example 2.6 (Consumption growth and EIS). Consider the life cycle model in (2.23)
with a0 = 0, T = 60 and a working life of N = 45 periods with constant income yt = 1
for all t < N. We set the discount factor to β = 0.96 and the interest rate to r = 0.05.
Because (1 + r) > β−1, we know that the household has the incentive to save initially
and shift consumption to later periods. To see this, solve the Euler equation (2.28) for
consumption growth,

ct+1

ct
=
[

β(1 + r)
] 1

γ > 1

Since γ > 0 and β(1 + r) > 1, the gross consumption growth ct+1/ct is larger than one.
However, the exact slope of the consumption profile depends on the EIS, 1

γ .
We consider two cases, EIS = 1

2 and EIS = 2. In the first case, consumption growth will
be moderate, whereas in the second case it will be more pronounced. These scenarios are
shown in Figure 2.8. For consumption to grow faster over the life cycle, the household
first needs to consume little and accumulate assets which are used to finance higher
consumption at the later stages of life. The asset profiles in Figure 2.9 illustrate this
situation. For the highly elastic case, the household accumulates substantially more
assets over its working life. ■

So far, we imposed that income is constant during working life. In reality, most people
face an upward-sloping income profile as they gather work experience and receive
promotions. We conclude this section with a more realistic model which takes this into
account.

Example 2.7 (Life cycle with earnings growth). Consider the life cycle model in (2.23)
with a0 = 0, T = 60 and a working life of N = 45 periods. Initially, the consumer
faces an upward-sloping income profile illustrated in Figure 2.10. This profile is taken
from Cocco, Gomes, and Maenhout (2005), a seminal paper in the household finance
literature which estimates income trajectories from the PSID for US men with high school
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(b) EIS = 2

Figure 2.8: Income and consumption profiles for different EIS values in Example 2.6 with β =
0.96 and r = 0.05.

education. After retirement, the agent receives retirement benefits which correspond to
68% of pre-retirement earnings. The earnings profile is rescaled so that it is on average
one during working life.

We assume that r = 0.04 and β = 1
1+r so that the household prefers to perfectly

smooth consumption over the life cycle. To do so, it initially borrows against future
earnings and starts saving only in its mid-thirties, as shown in Figure 2.10. ■

The prediction from this more realistic calibration is that we should see households
in debt until their late forties, and their wealth should peak at retirement. They then
completely decumulate their wealth holdings during the retirement phase. Is this what
we observe in the data?
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Figure 2.9: Life cycle profiles for assets for different EIS values in Example 2.6 with β = 0.96 and
r = 0.05.
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Figure 2.10: Life cycle profiles for income, consumption and assets for Example 2.7.

2.4 Life cycle profiles in the data

In the previous section, we saw that unless there was a gap between the subjective rate of
time preference and the market interest rate, consumption would end up being constant
over the life cycle. This was even true when income was not constant or when there
was no income in retirement. Households could perfectly smooth consumption because
we did not impose any borrowing constraints, and their net asset position evolved in
whichever way needed to generate this flat consumption profile (subject to the lifetime
budget constraint). At any particular age, income and consumption were therefore more
or less disconnected.

Is there any evidence that this prediction holds up in the data? Figure 2.11 plots
average household income and nondurable consumption by education group for the
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Figure 2.11: Average income and (nondurable) consumption by education in £/week. Source:
Attanasio and Weber (2010, Figure 1), based on UK Family Expenditure Survey
1978–2007

Figure 2.12: Average income and (nondurable) consumption by cohort and education in £/week.
Source: Attanasio and Weber (2010, Figure 2), based on UK Family Expenditure
Survey 1978–2007

UK. From this graph it is clear that consumption tracks the concave shape of income
over the life cycle, suggesting that households cannot perfectly smooth consumption.

However, as Attanasio and Weber (2010) point out, this graph lumps together different
cohorts at the same age which is problematic since younger cohorts are richer due to
economic growth. Figure 2.12 additionally disaggregates the data by birth cohort, and
the cohort-specific consumption series are indeed somewhat flatter. Finally, Figure 2.13
shows per capita values, since household consumption changes over the life cycle when
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Figure 2.13: Average per capita income and (nondurable) consumption by cohort and education
in £/week. Source: Attanasio and Weber (2010, Figure 3), based on UK Family
Expenditure Survey 1978–2007

children are born into the household or move out. Controlling for household size
eliminates part of the consumption hump observed observed around the age of 50. After
applying these corrections, there seems to be some evidence for consumption smoothing,
even though not to the extent suggested by our models.

Nonetheless, the asset profiles observed in the data look quite different from what
we have found in Figure 2.10 and throughout this unit. Figure 2.14, panel (a) plots
the median household net worth (including housing) from the Survey of Consumer
Finances for the US, which turns out to be positive at all ages. This asset profile does not
look anything like the one in Figure 2.10, even though in the data households also face
an initially upward-sloping earnings profile as shown in Figure 2.14, panel (b), just like
we assumed in Example 2.7. Our theory predicts that households should borrow against
future income, suggesting that in the real world there may be credit market frictions
preventing them to do so.

Another discrepancy arises if we compare the decumulation of wealth predicted by
our model (e.g., in Figure 2.10) compared to the data. Figure 2.14 shows that the median
household keeps a lot of wealth until very old age instead of consuming it. This might
be due to several reasons such as the intention to leave bequests for one’s children,
or because a substantial fraction of that wealth is invested in a household’s primary
residence, an illiquid asset people cannot or do not want to downsize.

2.5 Main takeaways

In terms of theory, this unit covered the following concepts:
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Figure 2.14: Median net worth and gross household labour income (incl. retirement benefits) in
thousands of 2009 USD. Medians are computed within 5-year age bins. Data source:
SCF 1998–2007

1. We studied how changes in the interest rate affect consumption in a two-period
model and how such changes can be decomposed into three distinct effects:

• The substitution effect quantifies how consumption shifts between periods due
to changes in the relative price.

• The income effect characterizes changes to an agent’s budget arising from
higher interest income (lender) or higher interest payments (borrower).

• Lastly, the wealth effect quantifies how the present value of future income is
affected by the interest rate.

2. We introduced the elasticity of intertemporal substitution as a way to quantify how
strongly households adjust their consumption growth in response to interest rate
changes.

3. We discussed the life cycle model with many periods as a natural extension of the
two-period problem. In this model, households save during their working life to
finance consumption in retirement.

Moreover, we examined whether the life cycle model can explain the trajectories of
consumption, income and wealth in the data.

1. We found that there was some support for consumption smoothing in the data,
even though to a lesser extent than what is predicted by our (simple) model.

2. Our simple model performed poorly in terms of explaining the life cycle profile of
wealth. In particular, it failed to capture dissaving in old age.
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Appendix 2.1: Full derivation of the life cycle model

This section contains the detailed steps required to solve the full life cycle model with
many periods and CRRA preferences. We start with the general problem stated in (2.23),
derive the lifetime budget constraint and then solve for optimal consumption.

Lifetime budget constraint. Take the budget constraint (2.24) for any t and rewrite it
as

at+1 = (1 + r)at + yt − ct .

Dividing this by (1 + r)t+1, we have

at+1

(1 + r)t+1 =
(1 + r)at

(1 + r)t+1 +
yt

(1 + r)t+1 − ct

(1 + r)t+1

=
at

(1 + r)t +
1

1 + r
yt

(1 + r)t −
1

1 + r
ct

(1 + r)t

Next, we sum both sides over all t = 0, . . . , T − 1,

T−1

∑
t=0

at+1

(1 + r)t+1 =
T−1

∑
t=0

at

(1 + r)t +
1

1 + r

T−1

∑
t=0

yt

(1 + r)t −
1

1 + r

T−1

∑
t=0

ct

(1 + r)t (2.34)

The sum on the left-hand side can be written as

T−1

∑
t=0

at+1

(1 + r)t+1 =
T

∑
t=1

at

(1 + r)t =
T−1

∑
t=1

at

(1 + r)t

where the last step follows because aT = 0 by (2.25) and optimality (the household would
not want to leave behind a positive amount of assets). We can subtract the right-hand
side of (2.34) from the first term on left-hand side to see that

T−1

∑
t=0

at

(1 + r)t −
T−1

∑
t=0

at+1

(1 + r)t+1 =
T−1

∑
t=0

at

(1 + r)t −
T−1

∑
t=1

at

(1 + r)t = a0

The LTBC in (2.34) therefore becomes

0 = a0 +
1

1 + r

T−1

∑
t=0

yt

(1 + r)t −
1

1 + r

T−1

∑
t=0

ct

(1 + r)t

Multiplying by (1 + r) and rearranging terms, we obtain the final form of the present-
value lifetime budget constraint:

T−1

∑
t=0

ct

(1 + r)t = (1 + r)a0 +
T−1

∑
t=0

yt

(1 + r)t (2.35)
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Optimal consumption. We start with the Euler equation (2.28) from the main text. If
we write it out explicitly for t = 0, 1, . . . , we have

c−γ
0 = β(1 + r)c−γ

1 =⇒ c1 =
[
β(1 + r)

] 1
γ c0

c−γ
1 = β(1 + r)c−γ

2 =⇒ c2 =
[
β(1 + r)

] 1
γ c1

...
...

We can thus use repeated substitution to link periods that are farther apart, for example:

c2 =
[
β(1 + r)

] 2
γ c0

More generally, we have

ct =
[
β(1 + r)

] t
γ c0 (2.36)

Substituting for the ct inside the sum in (2.35), we therefore get

T−1

∑
t=0

ct

(1 + r)t =
T−1

∑
t=0

[
β(1 + r)

] t
γ c0

(1 + r)t

= c0

T−1

∑
t=0

β
t
γ (1 + r)

t
γ−t

= c0

T−1

∑
t=0

β
t
γ (1 + r)

t(1−γ)
γ

= c0

T−1

∑
t=0

[
β

1
γ (1 + r)

1−γ
γ

]t

When the model’s parameters are such that

β
1
γ (1 + r)

1−γ
γ ̸= 1

we can apply the summation formula for the first T terms of a geometric series to find
that

T−1

∑
t=0

[
β

1
γ (1 + r)

1−γ
γ

]t
=

1 −
(

β
1
γ (1 + r)

1−γ
γ

)T

1 − β
1
γ (1 + r)

1−γ
γ

Summarising, from the Euler equation and the lifetime budget constraint we found that

c0

1 −
(

β
1
γ (1 + r)

1−γ
γ

)T

1 − β
1
γ (1 + r)

1−γ
γ

 = (1 + r)a0 +
T−1

∑
t=0

yt

(1 + r)t
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and therefore

c0 =

 1 − β
1
γ (1 + r)

1−γ
γ

1 −
(

β
1
γ (1 + r)

1−γ
γ

)T


︸ ︷︷ ︸

≡χ

[
(1 + r)a0 +

T−1

∑
t=0

yt

(1 + r)t

]

Consumption at age t = 0 is thus some fixed fraction χ of lifetime wealth which only
depends on parameters and the interest rate. Consumption at any period t > 0 can then
be determined from c0 using (2.36).

Let’s see whether this expression reduces to what we have previously found for
various special cases. For example, for T = 2, γ = 1 and a0 = 0, we are back to the
two-period log-preferences case we studied in section 2.2. In this case, we see that 1 − β

1
γ (1 + r)

1−γ
γ

1 −
(

β
1
γ (1 + r)

1−γ
γ

)T

 =
1 − β

1 − β2 =
1 − β

(1 + β)(1 − β)
=

1
1 + β

and therefore consumption in period 1 is given by

c0 =
1

1 + β

[
y0 +

y1

1 + r

]
.

Reassuringly, this is exactly what we found in (2.12) after taking into account that time
now starts at t = 0.

What about the three-period model with log preferences and a0 = 0 which you are
asked to solve in the exercises? In this case, the expression for χ simplifies to 1 − β

1
γ (1 + r)

1−γ
γ

1 −
(

β
1
γ (1 + r)

1−γ
γ

)T

 =
1 − β

1 − β3 =
1 − β

(1 + β + β2)(1 − β)
=

1
1 + β + β2

The polynomial factorisation in the denominator in the second step is not obvious but
can be easily verified:

(1 + β + β2)(1 − β) = 1 + β + β2 − β − β2 − β3 = 1 − β3

Consequently, consumption in the first period is given by

c0 =
1

1 + β + β2

[
y0 +

y1

(1 + r)
+

y2

(1 + r)2

]
.
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Exercises

Exercise 2.1 (Income changes in a two-period model). Consider the standard two-period
consumption-savings problem

max
c1, c2, a2

log(c1) + β log(c2)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

with the following parameters: β = 1, r = 0, y1 = 1 and y2 = 1.5. Imagine now that the
household gets a one-time bonus in the first period which increases income to y1 = 2.

(a) Plot the initial and the new solution to the household’s problem in a graph similar
to Figure 2.2. How does the household’s lending/borrowing behaviour change?

(b) Can you identify any substitution, income or wealth effects that explain the move-
ment from the initial to the new allocation?

Exercise 2.2 (Substitution, income and wealth effects for a borrower). Recall the setting
in Example 2.1: the illustration in Figure 2.2 depicted the substitution and income effects
for a lender when the interest rate r increases.

(a) Assume now that the household is a borrower and draw the corresponding graphs
for this scenario.

You don’t need need to draw the graphs to scale, but if you want, you can assume
the following parameters for this exercise: β = 1, y1 = 1, y2 = 5 and an interest
rate change from r = 0 to r′ = 0.6.

(b) Tabulate the sign of the income, substitution and wealth effects for a borrower
in the same way as we did for the lender in Table 2.1. Can you unambiguously
determine the direction of the total effect?

Exercise 2.3 (Three-period problem with log preferences). Assume a household lives
for three periods. The first two periods represent its working age, so the household
receives income (y1, y2), whereas the household is retired in the third period and receives
no labour income. The maximisation problem reads as follows:

max
c1, c2, c3, a2, a3

log(c1) + β log(c2) + β2 log(c3)

s.t. c1 + a2 = y1 (E.1)
c2 + a3 = (1 + r)a2 + y2 (E.2)

c3 = (1 + r)a3 (E.3)

Assume that the household can freely save or borrow between periods.
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(a) Write down the present-value lifetime budget constraint (LTBC).

(b) Set up the Lagrangian for this problem, denoting the Lagrange multiplier for the
LTBC by λ, and take the first-order derivatives w.r.t. c1, c2 and c3.

(c) Use the first-order conditions to express c2 and c3 as functions of c1 and parameters.

(d) Plug the expressions you found for c2 and c3 into the lifetime budget constraint
and solve for the optimal choice of c1.

(e) Let β = 1, r = 0, y1 = y2 = 1, and compute optimal period-1 consumption. What
is the marginal propensity to consume (MPC) out of income in the first period?
Compute and evaluate the derivative MPC = ∂c1

∂y1
, and provide an economic

interpretation of the value you computed.

Exercise 2.4 (Life cycle with initial assets). Recall the simple T-period life cycle model
from Example 2.4 where the household works the first N periods and retires thereafter.
Specifically, the household maximises

max
{ct, at+1}T−1

t=0

T−1

∑
t=0

log(ct)

s.t. c0 + a1 = a0 + y0 (E.4)
ct + at+1 = (1 + r)at + yt ∀ t > 0

aT ≥ 0, a0 > 0 given

where income is constant during working life, i.e.,

yt =

{
y if t < N
0 else

Moreover, assume that the interest rate is r = 0. Note that we now have a budget
constraint (E.4) that is specific to the first period — the only (cosmetic) difference is that
the household no longer instantly receives interest income on its initial assets a0.

(a) State the lifetime budget constraint for this problem.

(b) Derive the Euler equation.

(c) Use the Euler equation to conclude that consumption is constant across all periods,
and denote this consumption level by c. Using the lifetime budget constraint, find
an expression for c as a function of parameters.

(d) Compute the marginal propensity to consume (MPC) out of income y, i.e., derive
the expression for ∂c/∂y.
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(e) Compute the marginal propensity to consume (MPC) out of initial wealth a0, i.e.,
derive the expression for ∂c/∂a0. How does it compare to the MPC out of income
y? Explain the economic intuition underlying this difference.

Exercise 2.5 (Life cycle with income growth). Consider a T-period life cycle model
where the household works the first N periods and retires thereafter. The household
maximises

max
{ct, at+1}T−1

t=0

T−1

∑
t=0

log(ct)

s.t. ct + at+1 = (1 + r)at + yt ∀ t
aT ≥ 0, a0 = 0

Income is assumed to grow by z% each period as long as the household is working, i.e.,

yt+1 = (1 + z)yt (E.5)

and initial income is set to y0 = 1. In retirement, yt = 0 for all t ≥ N. Moreover, assume
that the interest rate is r = 0.

(a) Use the law of motion for income (E.5) and the initial condition to find an expres-
sion for yt that depends only on y0 and parameters.

(b) State the lifetime budget constraint for this problem. Hint: You will have to
compute a sum of the form ∑n

i=0 xi for x > 1. The summation formula is given by6

n

∑
i=0

xi =
1 − xn+1

1 − x

(c) Derive the Euler equation.

(d) Use the Euler equation to conclude that consumption is constant across all periods,
and denote this consumption level by c. Using the lifetime budget constraint, find
an expression for c as a function of parameters.

(e) Let T = 60, N = 45 and z = 0.02. Compute the age at which the households starts
saving for retirement, i.e., find the smallest t such that yt > c!

6See https://en.wikipedia.org/wiki/Geometric_series#Closed-form_formula
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3 Complete markets

3.1 Introduction

So far, our analysis of household behaviour was fully deterministic: households knew the
realisation of their future income with certainty. To examine decisions under uncertainty,
we need to assume that households cannot perfectly predict some future quantity, e.g.,
their income, the interest rates or even their survival chances in old age.

In this unit, we focus on uncertainty about a household’s future income. We do this
in a so-called complete markets environment in which households have access to a set
of financial instruments which allow them to perfectly insure against any idiosyncratic
risk. While this framework is unrealistic, it serves as a benchmark that can be compared
to the incomplete markets model we will study in the next unit.

3.2 Uncertainty

Recall our canonical two-period consumption-savings problem (1.1) with deterministic
(known) income in period two. When income is no longer certain, we say that it is
stochastic or random. Formally, income is now modelled as a random variable with a
known distribution, i.e., the household is uncertain about the exact realisation of future
income, but it is perfectly aware of the underlying probability distribution and will
consider the properties of this probability distribution when making optimal decisions.

In macroeconomics, we frequently model random variables using a well-known dis-
tribution such as the normal (Gaussian) or log-normal distribution. However, working
with these distributions can quickly become complicated, so we will instead take an eas-
ier approach and assume that uncertain income takes on only two different realisations.
We denote these realisations as “good” (with subscript g) or “bad” (with subscript b)
with yb < yg:

yt+1 =

{
yb with probability π

yg with probability 1 − π
(3.1)

This definition says that yt+1 is a discrete random variable with two possible realisations:
the bad outcome yb has a probability of π, whereas with probability 1 − π the good
outcome is observed, and π can be any real number between 0 and 1. As stated above,
the household is perfectly aware of the values yb, yg and π. We say that the household
has rational expectations because its beliefs coincide with the actual process governing
yt+1.
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3.2.1 Mean and variance

We often characterize random variables using so-called moments. The first and second
(central) moments are called the mean (or expected value) and the variance. For the
random variable in (3.1), the mean can be computed as

Etyt+1 = yb · Pr ( yt+1 = yb ) + yg · Pr
(

yt+1 = yg
)

= ybπ + yg(1 − π)
(3.2)

The mean is thus the weighted sum of all possible outcomes with weights given by their
corresponding probabilities (we use Pr ( yt+1 = yb ) to denote the probability that yb is
realised). The expectations operator Etyt+1 states that we are computing the expected
value of its argument yt+1 using information available at time t. It tells us what value of
yt+1 we can expect to see on average if we draw a large number of income realisations.

Conversely, the variance quantifies the dispersion of realisations around their mean.
For random variable yt+1, it is defined as1

Var ( yt+1 ) = Ety2
t+1 − (Etyt+1)

2 . (3.3)

Specifically, for yt+1 as defined in (3.1), we can evaluate the first term on the right, Ety2
t+1,

analogously to (3.2):

Ety2
t+1 = y2

bπ + y2
g(1 − π)

while the second term is just the squared mean. Combining these expressions, we find
that the variance of income is given by

Var ( yt+1 ) = y2
bπ + y2

g(1 − π)︸ ︷︷ ︸
Ety2

t+1

−
[
ybπ + yg(1 − π)

]2

︸ ︷︷ ︸
(Etyt+1)

2

= y2
bπ + y2

g(1 − π)− y2
bπ2 − 2ybygπ(1 − π)− y2

g(1 − π)2

= y2
bπ(1 − π) + y2

g(1 − π)
(
1 − (1 − π)

)
− 2ybygπ(1 − π)

= π(1 − π)
[
y2

b + y2
g

]
− 2ybygπ(1 − π)

= π(1 − π)
[
yb − 2ybyg + yg

]
= π(1 − π)

[
yb − yg

]2 (3.4)

The expression in (3.4) has an intuitive interpretation: the variance increases with the
squared distance between yb and yg. The farther these two outcomes are from each other,
the more dispersed they are around their mean, and hence the variance increases.

Example 3.1. Consider the following stochastic income:

yt+1 =

{
y − ϵ with probability 1

2

y + ϵ with probability 1
2

(3.5)

1An alternative but equivalent definition of the variance is Var ( yt+1 ) = Et

[
(yt+1 − Etyt+1)

2
]
.
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for some ϵ > 0. The bad and good outcomes are equally likely, each with a probability
of π = 1

2 . From (3.2), it follows that the expected value is given by

Et [ yt+1 ] =
1
2
(y − ϵ) +

1
2
(y + ϵ) = y

while the variance can be obtained from (3.4) as

Var ( yt+1 ) =
1
2

(
1 − 1

2

) [
y − ϵ − (y + ϵ)

]2
=

1
4
(2ϵ)2 = ϵ2

■

Example 3.2 (Mean-preserving spread). Continuing with Example 3.1, assume that
stochastic income now follows

yt+1 =

{
y − 2ϵ with probability 1

2

y + 2ϵ with probability 1
2

(3.6)

It is straightforward to see that the mean remains unchanged, but the variance is instead
given by

Var ( yt+1 ) = 4ϵ2 .

Because the realisations are more spread out around the same mean, such a transfor-
mation is referred to as a mean-preserving spread. We will use it later to study how
risk-averse agents change their behaviour if uncertainty increases while keeping the
mean constant. ■

3.3 Risk aversion

Before solving a consumption-savings problem under uncertainty, we need to discuss
what we mean by “risk aversion” and how this relates to our standard CRRA utility
function,

u(c) =

{
c1−γ−1

1−γ if γ ̸= 1

log(c) if γ = 1
(3.7)

Generally speaking, the risk aversion is related to the utility function’s curvature: recall
Figure 1.1 which plots the CRRA utility function for various values of the relative
risk aversion (RRA) parameter γ, reproduced here for convenience. As can be seen in
Figure 3.1, more curvature is associated with higher values of γ.

In the next section, we characterise risk aversion using the certainty equivalent and
the risk premium. An alternatively way to quantify risk aversion is to derive the Arrow-
Pratt coefficient of relative risk aversion. It turns out that with CRRA preferences, the
Arrow-Pratt coefficient of relative risk aversion is identical to the parameter γ in (3.7).
This derivation is more advanced and therefore relegated to the appendix 3.1.
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Figure 3.1: CRRA utility for different values of the relative risk aversion parameter γ.

3.3.1 Certainty equivalent and risk premium

One way to quantify risk aversion is to compute the certainty equivalent and the risk
premium. Consider a static setting (no savings!) where the individual consumes c,
which is stochastic. The individual can either have a bad draw cb or a good draw cg with
cb < cg. For simplicity, let’s impose that either of these outcomes is equally likely. The
expected utility of such a gamble is thus given by

E [ u(c) ] =
1
2

u(cb) +
1
2

u(cg) (3.8)

where u(•) is the usual CRRA utility function. Imagine now that the individual could
avoid the gamble and instead receive a deterministic amount CE. Which value of CE
would yield the same utility as (3.8)? This value is called the certainty equivalent and is
defined as

u(CE) = E [ u(c) ] (3.9)

Because the individual is risk averse, the amount CE is lower than the average consump-
tion E [ c ] the individual can expect to receive: CE < E [ c ].2

The risk premium is defined as the difference between the expected outcome and the
certainty equivalent:

p = E [ c ]− CE

For a risk-averse consumer, the risk premium is positive.
The intuition is as follows: a risk-averse person would like to avoid risky gambles

and therefore is willing to accept an amount that is certain but lower than the expected
outcome of the gamble. The risk premium says that the consumer is willing to forfeit

2This follows from Jensen’s inequality. Because the CRRA utility function u(•) is strictly concave, we have
that E [ u(c) ] < u(E [ c ]) which implies u(CE) < u(E [ c ]) from (3.9), and therefore CE < E [ c ].
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an amount p in expectation. The more risk-averse an individual is, the higher the risk
premium. This is illustrated in Figure 3.2, which graphically compares the certainty
equivalents and risk premia for two individuals, one with a relative risk aversion γ = 1
(log preferences) and the other with γ = 2. Both face the same gamble, but as the figure
shows, the more risk-averse person demands a higher risk premium (or accepts a lower
certainty equivalent).

cb cgCE E[c]

u(cb)

u(cg)

E[u(c)] = u(CE)
u(E[c])

p = 1

cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)

u(E[c])

p = 2

Figure 3.2: Certainty equivalent and risk premium p for different RRA values (top: γ = 1,
bottom: γ = 2). Both individuals face the same gamble, but the more risk-averse
person (with γ = 2) has a higher risk premium!

Clearly, risk aversion is related to the curvature of the utility function. As an exercise,
you can try to draw this graph for a risk-neutral individual who has by definition a linear
utility function (and therefore no curvature). You will find that for such an individual
the risk premium is zero!3

3If u(•) is linear, it can be interchanged with the expectations operator, so we have E [ u(c) ] = u(E [ c ])
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t = 1 t = 2

State s1 State s2

s2 = g

s2 = b

Figure 3.3: Even tree for two periods with uncertainty about state s2 in the second period.

3.4 Complete markets

We are now in a position to solve our first heterogeneous-agent model with idiosyncratic
uncertainty and complete markets. By complete markets we mean a market structure
where the household can perfectly insure against idiosyncratic risk by purchasing or
selling contingent bonds, i.e., bonds that pay off if a specific state of the world is realised
tomorrow. If there are no restrictions on the trade of such bonds (e.g., borrowing
constraints), we say that markets are complete.

For example, imagine the event tree illustrated in Figure 3.3. In the first period, the
state s1 is observed before households make any decision, and is therefore non-stochastic.
However, in period 2 there are two possible states of the world, s2 = b or s2 = g which
are uncertain at t = 1. In what follows, we allow the household’s income realisation to
depend on s2, and thus period-2 income itself will be uncertain.

3.4.1 Decentralised economy

One way to implement complete markets is to allow for unrestricted trade in so-called
Arrow securities (named after Nobel laureate Kenneth Arrow). These are one-period
bonds which pay one unit of consumption next period, but only if a specific state s2
obtains. In our example, we have two such securities, one for the state s2 = b and one
for s2 = g, each paying

payoffb(s2) =

{
1 if s2 = b
0 if s2 = g

(3.10)

payoffg(s2) =

{
0 if s2 = b
1 if s2 = g

(3.11)

We denote the period-1 prices of these Arrow bonds by qb and qg, respectively. Using
this setup, we can now proceed to solve the household problem with income uncertainty.

and hence CE = E [ c ].
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Example 3.3 (Household optimality conditions). Consider the following two-period
consumption-savings problem with uncertain period-2 income and complete markets:

max
c1, c2b, c2g, ab, ag

u(c1) + β
[
π u(c2b) + (1 − π)u(c2g)

]
︸ ︷︷ ︸

≡Eu(c2)

(3.12)

s.t. c1 + qbab + qgag = y1 (3.13)
c2b = ab + y2b (3.14)
c2g = ag + y2g (3.15)

where period-2 income is given by

y2 =

{
y2b with probability π

y2g with probability 1 − π
(3.16)

The objective is to maximise expected utility u(c1) + βEu(c2) subject to three budget
constraints. For period 1, (3.13) states that the household chooses consumption c1 and
can additionally purchase quantities ab and ag of Arrow securities at prices qb and qg,
respectively. Each of these securities pays one unit of consumption in its respective state,
so in period 2, the household consumes that payoff as well as any realised income as
shown in (3.14) and (3.15).

We can proceed as in earlier units and consolidate all three budget constraints into
a single present-value lifetime budget constraint (LTBC). Solving (3.14) and (3.15) for
assets and plugging into (3.13), we have that

c1 + qb
(
c2b − y2b

)
+ qg

(
c2g − y2g

)
= y1 .

Collecting consumption terms on the left-hand side, we obtain the LTBC

c1 + qbc2b + qgc2g = y1 + qby2b + qgy2g . (3.17)

Note that there is a direct way to arrive at the budget constraint in the complete markets
environment. Because the household can trade Arrow securities for all idiosyncratic
states of the world, it can outright purchase consumption claims for both possible
states in period 2 at prices qb and qg. Since we have normalised the price of period-1
consumption to one, the total cost of lifetime consumption is the left-hand side of (3.17).
At the same time, the household can sell its claims to income y2b and y2g in period 2.
Together with y1, the value of its lifetime income is represented by the right-hand side of
(3.17).

We can now set up the Lagrangian with (3.17) as the only constraint:

L = u(c1) + β
[
π u(c2b) + (1 − π)u(c2g)

]
+ λ

[
y1 + qby2b + qgy2g − c1 − qbc2b − qgc2g

]

69



The first-order conditions for c1, c2b and c2g are given by

∂L
∂c1

= u′(c1)− λ = 0 (3.18)

∂L
∂c2b

= βπu′(c2b)− λqb = 0 (3.19)

∂L
∂c2g

= β(1 − π)u′(c2g)− λqg = 0 (3.20)

Since the household can trade in two assets (the two Arrow securities), it now has
two Euler equations (in general, we’ll have one Euler equation for each intertemporal
choice). The Euler equation for the Arrow bond contingent on s2 = b can be obtained by
combining (3.18) and (3.19) and eliminating λ,

u′(c1)qb = βπu′(c2b) (3.21)

while the other one follows from (3.18) and (3.20):

u′(c1)qg = β(1 − π)u′(c2g) (3.22)

■

In the previous example, we solved the household’s problem for a generic utility
function u(•). Next, we derive the optimal consumption rules under the assumption of
log preferences.

Example 3.4 (Household problem with log preferences). Continuing with Example
3.3, we now assume that the household has log preferences. The solution with gen-
eral CRRA works in an analogous fashion, but the expressions are substantially more
complicated.

Imposing u′(c) = 1
c , the Euler equations in (3.21) and (3.22) become

1
c1

qb = βπ
1

c2b
1
c1

qg = β(1 − π)
1

c2g

which implies that

c2b = βπ
1
qb

c1 (3.23)

c2g = β(1 − π)
1
qg

c1 (3.24)

Denote the value of lifetime income by y,

y ≡ y1 + qby2b + qgy2g (3.25)
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so that we can rewrite the budget constraint (3.17) as

c1 + qbc2b + qgc2g = y .

Substituting for c2b and c2g using (3.23) and (3.24) and solving for c1, we find

c1 + qbβπ
1
qb

c1 + qgβ(1 − π)
1
qg

c1 = y

c1

[
1 + βπ + β(1 − π)

]
= y

=⇒ c1 =
1

1 + β
y (3.26)

The last expression should look familiar since it is the same as in the case of no uncer-
tainty and log preferences: in the first period, the household consumes a fraction 1

1+β of
the present value of lifetime income.

Plugging in the expression for c1 into (3.23) and (3.24) yields the optimal consumption
levels in period 2 for the states b and g:

c2b = βπ
1
qb

c1 =
β

1 + β

π

qb
y (3.27)

c2g = β(1 − π)
1
qg

c1 =
β

1 + β

1 − π

qg
y (3.28)

These again don’t look very different from what we found in the case of no uncertainty.
In fact, if qb =

π
1+r and qg = 1−π

1+r , they would be identical to what we obtained in unit 1.
■

The above example illustrates how to solve the household’s problem in partial equi-
librium, taking prices qb and qg as given. The following example shows how to work
out the equilibrium prices in an economy with two households and CRRA preferences.

Example 3.5 (Bond prices in general equilibrium). Consider an economy with two
households, A and B, which face idiosyncratic income risk in period 2. Denote by Y1,
Y2b and Y2g the aggregate endowments in the respective periods and states, i.e.,

Y1 = yA
1 + yB

2

Y2b = yA
2b + yB

2b

Y2g = yA
2g + yB

2g

What are the equilibrium prices qb and qg in this economy? There are at least two
ways to solve this problem:

1. Use the optimal consumption rules and find the market-clearing price vector. Even
with log preferences, this requires a lot of algebra and is left to appendix 3.3.
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2. Use insights from the first-order conditions to determine the equilibrium price
vector.

In this example, we proceed with the second approach. Recall the first-order conditions
from (3.18), (3.19) and (3.20). With CRRA preferences, for household type i = A, B these
read (

ci
1

)−γ
= λi

βπ
(

ci
2b

)−γ
= λiqb

β(1 − π)
(

ci
2g

)−γ
= λiqg

Dividing the FOCs for A by those for B, we see that(
cA

1

cB
1

)−γ

=
λA

λB
,

(
cA

2b

cB
2b

)−γ

=
λA

λB
,

(
cA

2g

cB
2g

)−γ

=
λA

λB

From these equations we conclude that

cA
1

cB
1
=

cA
2b

cB
2b

=
cA

2g

cB
2g

=

(
λA

λB

)− 1
γ

(3.29)

Note that the right-hand side is a constant! We don’t know the individual consumption
levels, but the first-order conditions tell us that relative consumption remains unchanged
in all periods and all states. It is therefore the case that A and B will consume a constant
fraction of aggregate income each period. Let α be the fraction consumed by A, so that4

cA
1 = αY1 , cA

2b = αY2b , cA
2g = αY2g

Plugging these expressions into A’s Euler equation for Arrow bond b, we have(
cA

1

)−γ
qb = βπ

(
cA

2b

)−γ

(αY1)
−γ qb = βπ (αY2b)

−γ

=⇒ qb = βπ

(
Y2b

Y1

)−γ

(3.30)

4We can easily derive the expression for α from (3.29): For all t and s ∈ {b, g}, B’s consumption is related
to A’s consumption such that cB

ts = (λA/λB)
1/γcA

ts . From the aggregate resource constraint it follows
that

cA
ts + cB

ts = Yts =⇒ cA
ts + (λA/λB)

1/γcA
ts = Yts =⇒ cA

ts =
1

1 + (λA/λB)1/γ
Yts .

We hence have α ≡ 1
1+(λA/λB)1/γ .
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Similarly, using the Euler equation for Arrow bond g, we get

qg = β(1 − π)

(
Y2g

Y1

)−γ

(3.31)

What do we learn from the expressions in (3.30) and (3.31)? As you can see, with
complete markets the distribution of income does not matter for market prices, as these
are only a function of aggregate income and parameters.

■

Now that we computed the equilibrium Arrow bond prices qb and qg, we return to
the household’s problem and solve for the optimal allocation.

Example 3.6 (Equilibrium with symmetric income shocks). Continuing with Example
3.4 and Example 3.5, we now impose that households A and B face symmetric income
risk as shown in Table 3.1. Both have identical income yA

1 = yB
1 = y1 in period 1, with

aggregate income being Y1 = yA
1 + yB

1 = 2 · y1.

Household Income in t = 1 Income in t = 2

State b (prob. π) State g (prob. 1 − π)

A y1 y2 − ϵ y2 + ϵ
B y1 y2 + ϵ y2 − ϵ

Aggregate Y1 = 2y1 Y2 = 2y2 Y2 = 2y2

Table 3.1: Income in economy from Example 3.6.

In the second period, household A can have a good or bad income realisation,

yA
2 =

{
yA

2b = y2 − ϵ with probability π

yA
2g = y2 + ϵ with probability 1 − π

(3.32)

where 0 < ϵ < y2. For household B, the income realisations are exactly flipped so that in
the aggregate, Y2 = 2 · y2 with certainty (for household B the labels “good” and “bad”
are confusing, but we choose to label the economy from A’s perspective).

Let’s now use the equilibrium prices we found earlier. With γ = 1, (3.30) and (3.31)
become

qb = βπ
Y1

Y2

qg = β(1 − π)
Y1

Y2
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and thus the lifetime income for either type i = A, B is

yi = y1 + qbyi
2b + qgyi

2g

= y1 + βπ
Y1

Y2
yi

2b + β(1 − π)
Y1

Y2
yi

2g

= y1 + β
Y1

Y2

[
πyi

2b + (1 − π)yi
2g

]
︸ ︷︷ ︸

Eyi
2s

To simplify the remainder of this example, we now impose that π = 1
2 and hence

EyA
2s = πyA

2b + (1 − π)yA
2g =

1
2
(y2 − ϵ) +

1
2
(y2 + ϵ) = y2

and analogously for type B. Consequently, we have

yi = y1 + β
Y1

Y2
y2 ,

and because Yt = 2 · yt for t = 1, 2,

yi =
Y1

2
+ β

Y1

Y2

Y2

2
= (1 + β)

1
2

Y1 .

Plugging this into (3.26), consumption in period 1 for each household is

ci
1 =

1
1 + β

yi =
1
2

Y1

Lastly, for period 2, from (3.27) and (3.28) it follows that

ci
2b =

β

1 + β

π

qb
yi =

1
1 + β

Y2

Y1
yi =

1
1 + β

(1 + β)
1
2

Y2 =
1
2

Y2

ci
2g =

β

1 + β

1 − π

qg
yi =

1
1 + β

Y2

Y1
yi =

1
1 + β

(1 + β)
1
2

Y2 =
1
2

Y2

Consequently, each household consumes exactly half the aggregate endowment in each
period. The intuition behind this result is that both households are ex ante identical: with
π = 1

2 , each of them was equally likely to get a good or bad draw, hence they should
intuitively receive the same share of aggregate income if they can perfectly hedge against
idiosyncratic income risk. Consequently, consumption is independent of whether the
household turned out to be the lucky or unlucky ex post!

■
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3.4.2 Centralised economy

Instead of working through the decentralised equilibrium, we can equivalently solve
the social planner’s problem. To see this, recall the first fundamental theorem of welfare
economics, which loosely speaking states that a decentralised equilibrium with complete
markets, complete information and perfect competition will be Pareto optimal. All of
these criteria are satisfied in our setting, so we could just as well solve for the allocation
using the planner’s problem, which we do next.

Example 3.7 (Planner’s solution). Consider the economy with two agents, A and B,
from Example 3.5. We allow for arbitrary income realisations for A and B in period
t = 1, 2 and state s = b, g, and define aggregate endowments as the sum of these,

Y1 = yA
1 + yB

2

Y2b = yA
2b + yB

2b

Y2g = yA
2g + yB

2g

To set up the planner’s problem, we need to assign so-called Pareto weights which the
planner attaches to each household in the economy. Denoting these weights by θi, the
planner solves5

max
(ci

1, ci
2b, ci

2g)i=A,B

∑
i=A,B

θi

{
u(ci

1) + β
[
π u

(
ci

2b

)
+ (1 − π)u

(
ci

2g

)]}
(3.33)

s.t. ∑
i=A,B

ci
1 = Y1 (3.34)

∑
i=A,B

ci
2b = Y2b (3.35)

∑
i=A,B

ci
2g = Y2g (3.36)

where i = A, B indexes households A and B.
Let’s briefly review the elements of a social planner’s problem: The planner maximises

a (weighted) sum of utilities of individual households given in (3.33) subject to the
aggregate resource constraints (3.34), (3.35) and (3.36). For the planner it is not relevant
how endowments are distributed within periods since the planner pools all resources,
so it must only observe the aggregate resource constraints. Moreover, the planner does
not solve for household-specific purchases of Arrow bonds as we did earlier but instead
directly allocates consumption to each household in each period and state.

5In general, if we want to replicate the decentralised allocation, these weights will depend on households’
endowments. The endowments in Example 3.5 are ex ante identical for both households, so their Pareto
weights will also be identical.
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The Lagrangian for the centralised problem is

L = ∑
i=A,B

θi

{
u(ci

1) + β
[
π u

(
ci

2b

)
+ (1 − π)u

(
ci

2g

)]}
+ λ1

[
Y1 − ∑

i=A,B
ci

1

]
+ λb

[
Y2b − ∑

i=A,B
ci

2b

]
+ λg

[
Y2g − ∑

i=A,B
ci

2g

]
and the first-order conditions for ci

1, ci
2b and ci

2g are

∂L
∂ci

1
= θiu′(ci

1)− λ1 = 0 (3.37)

∂L
∂ci

2b
= θiβu′(ci

2b)− λb = 0 (3.38)

∂L
∂ci

2g
= θiβu′(ci

2g)− λg = 0 (3.39)

Note that the Lagrange multipliers λ1, λb and λg are the same for all households, hence
from (3.37) we have

θAu′(cA
1 ) = λ1

θBu′(cB
1 ) = λ1

}
=⇒ u′(cA

1 )

u′(cB
1 )

=
θB

θA

Intuitively, if the planner’s weight on A is larger, then the marginal utility of A has to be
smaller, i.e., A is allocated a higher consumption level! With CRRA preferences, we can
take this one step further to find that(

cA
1

)−γ(
cB

1

)−γ =
θB

θA
=⇒ cA

1

cB
1
=

(
θB

θA

)− 1
γ

(3.40)

If you compare this to (3.29) of the decentralised problem, you see that the planner’s
weight θi is the inverse of household i’s Lagrange multiplier on the budget constraint,
θi = λ−1

i .
From (3.38) and (3.39), it analogously follows that

cA
2b

cB
2b

=
cA

2g

cB
2g

=

(
θB

θA

)− 1
γ

(3.41)

We can now solve for the consumption allocation as a function of parameters and the
Pareto weights. For example, for the first period we solve (3.40) for cB

1 and plug it into
the resource constraint to see that

cA
1 + cB

1 = Y1

cA
1 + (θB/θA)

1
γ cA

1 = Y1

cA
1

[
1 + (θB/θA)

1
γ

]
= Y1

=⇒ cA
1 =

1

1 + (θB/θA)
1
γ

Y1
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From (3.41) we see that this is in fact true for any period t and each state s ∈ {b, g},
hence

cA
st =

1

1 + (θB/θA)
1
γ

Yst

We can verify that whenever A is assigned a higher relative weight θA/θB, it will be
allocated more consumption in each period and state. ■

3.5 Main takeaways

We studied how to characterise the degree of an agent’s risk aversion, and we concluded
that:

1. More risk-averse agents demand a smaller certainty equivalent, i.e., they accept a
smaller certain amount instead of a gamble.

2. More risk-averse agents demand a higher risk premium.

3. Risk aversion is connected to the curvature of the utility function. For CRRA
preferences, a higher relative risk aversion parameter γ leads to more risk-averse
agents.

Moreover, we examined how idiosyncratic income risk affects consumption choices in
complete markets models.

1. We found that with complete markets, households can perfectly insure against
idiosyncratic risk ex ante.

2. Households’ allocations and welfare therefore do not depend on their ex post
income realisation, i.e., on whether they were lucky or not, but only on aggregate
outcomes.

3. Allocations with complete markets are Pareto optimal. We can therefore find an
equilibrium by solving either the decentralised or the social planner’s problem
with appropriate Pareto weights.

Appendix 3.1: Arrow-Pratt coefficient of relative risk aversion

In the main text, we developed the intuition for how risk aversion relates to a consumer’s
willingness to accept gambles. In this section, we explore the exact meaning of the
relative risk aversion parameter.

Risk aversion is related to curvature, but it is inconvenient to characterise it directly
in terms of a utility function’s second derivative since we can apply arbitrary strictly
monotonic transformations to u(•) without changing the underlying risk attitudes,
whereas the derivative changes. In economics and finance, we instead use the Arrow-
Pratt coefficient of relative risk aversion (due to Pratt (1964) and Arrow (1965)) which can
be obtained as follows:
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Imagine a one-period setting where an individual has initial assets a and is offered
the following gamble: with equal probability he or she either wins or loses an amount ϵ
with 0 < ϵ < a. Because there is no reason to save, the agent chooses to consume all its
resources, so the expected utility is

E [ u ] =
1
2

u(a − ϵ) +
1
2

u(a + ϵ)

How much would the individual be willing to pay to avoid this gamble and instead
receive a certain amount? Clearly, the individual would be willing to increase the
amount p paid until the expected utilities of both scenarios are the same, i.e.,

u(a − p) =
1
2

u(a − ϵ) +
1
2

u(a + ϵ) (3.42)

Note that p here is identical to the risk premium from the main text. If we want to solve
for p without imposing a particular utility function, we need to approximate the left-
and right-hand sides of (3.42) to get p and ϵ outside of u(•) using a method called Taylor
series approximation (see appendix 3.2 for details).

Definition 3.1 (Taylor series approximation). Let f (•) be a differentiable function.
The first-order Taylor series approximation around a point x0 is given by

f (x) ≈ f (x0) + f ′(x0)(x − x0)

The second-order Taylor series approximation at x0 is

f (x) ≈ f (x0) + f ′(x0)(x − x0) +
1
2

f ′′(x0)(x − x0)
2

Start with the left-hand side of (3.42): using a first-order approximation around the
value of initial assets a, we have

u(a − p) ≈ u(a) + u′(a)
(
(a − p)− a

)
= u(a)− p · u′(a) (3.43)

Next, we compute the second-order approximation of the right-hand side of (3.42):6

1
2

[
u(a − ϵ) + u(a + ϵ)

]
≈ u(a) +

1
2

[
u′(a)

(
(a − ϵ)− a) + u′(a)

(
(a + ϵ)− a

)]
+

1
2
· 1

2

[
u′′(a)

(
(a − ϵ)− a)2 + u′′(a)

(
(a + ϵ)− a

)2
]

= u(a) +
1
2

ϵ2u′′(a) (3.44)

6You can try to compute the first-order approximation yourself. You will find that ϵ drops out of the
approximate expression, which is not very useful if we aim to relate p to the riskiness of the gamble
which depends on ϵ.
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Equation (3.42) is therefore approximated by setting (3.43) equal to (3.44):

u(a)− p · u′(a) = u(a) +
1
2

ϵ2u′′(a)

We can solve this expression for p to find that

p = −1
2

ϵ2 u′′(a)
u′(a)

The willingness to pay p to avoid the gamble is consequently a function of two terms:

1. the variance of the gamble, ϵ2 (compare this to Example 3.1 to convince yourself
that this indeed is the variance)

2. The absolute risk aversion −u′′(a)/u′(a). Because our utility function is assumed to
be concave, this term is in fact positive.

To arrive at the RRA coefficient we were originally interested in, we need to express the
willingness to avoid the gamble relative to the initial asset level a:

p
a
=

1
2

(ϵ

a

)2
(
−u′′(a)

u′(a)
a
)
=

1
2

(ϵ

a

)2

︸ ︷︷ ︸
Var.

(
−∂u′(a)

∂a
a

u′(a)

)
︸ ︷︷ ︸

RRA

(3.45)

Note that all quantities are rescaled by a, so everything is expressed relative to a: the
individual is willing to pay p/a per unit, and the per-unit variance of the gamble is
given by (ϵ/a)2. Equation (3.45) thus tells us that willingness to pay per unit variance is
proportional to the relative risk aversion. Moreover, the RRA is defined as the elasticity
of the marginal utility u′(a) with respect to wealth a, i.e., it tells us the relative change in
marginal utility as assets change by 1%.7

Example 3.8 (Relative risk aversion with CRRA preferences). As the name implies,
the relative risk aversion of CRRA preferences is constant and consequently independent
of assets, income or consumption. To see this, compute the first two derivatives of

u(c) =
c1−γ

1 − γ

which are given by

u′(a) = c−γ u′′(c) = −γc−γ−1

The RRA coefficient is

−u′′(c)c
u′(c)

= −−γc−γ−1c
c−γ

= γ

and therefore is indeed given by the parameter γ. One implication of constant relative
risk aversion is that if households can choose to save in riskless and risky assets, the
share invested in risky assets is independent of wealth (at least in models without labour
income). ■

7Recall that the elasticity of a function f (x) with respect to x is defined as ∂ f (x)
∂x

x
f (x) .
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Figure 3.4: Taylor series approximations of log utility u(c) = log(c) around the point c = 1. Left
panel shows function values, right panel the approximation error.

Appendix 3.2: Taylor series approximation

We saw the 1st- and 2nd-order Taylor series approximations in Definition 3.1. It is
possible to include higher-order terms that make the approximation more precise in
a small neighbourhood around the point at which the function is approximated. The
approximation represents the function as a polynomial of the desired degree.

Figure 3.4 shows the first three approximations of log preferences u(c) = log(c)
around the point c = 1. As you can see, the approximation error close to c = 1 tends to
be smaller for higher-order polynomials, but on the other hand, these tend to perform
worse farther away from the point at which we approximate the function!

Appendix 3.3: Finding prices via market clearing

In this section, we illustrate an alternative way to pin down equilibrium prices for the
economy in Example 3.4. We require equilibrium in three markets:

1. Period-1 consumption

2. Period-2 consumption in state b

3. Period-2 consumption in state g

We choose to clear the first two of these, and the third one clears by Walras’ Law.
Start with period-1 consumption: plugging the optimal consumption rule (3.26) into
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the aggregate resource constraint, we have

cA
1 + cB

2 = Y1

1
1 + β

yA +
1

1 + β
yB = Y1

Next, we substitute in the expressions for lifetime income from (3.25):

1
1 + β

[
yA

1 + qbyA
2b + qgyA

2g + yB
1 + qbyB

2b + qgyB
2g

]
= Y1

1
1 + β

[
yA

1 + yB
1 + qb

(
yA

2b + yB
2b

)
+ qg

(
yA

2g + yB
2g

)]
= Y1

1
1 + β

[
Y1 + qbY2b + qgY2g

]
= Y1

qbY2b + qgY2g = βY1

Solving for qg yields

qg =
βY1 − qbY2b

Y2g
. (3.46)

We proceed in exactly the same fashion for consumption in period 2 in state b. Plug-
ging in optimal consumption (3.27) into the aggregate resource constraint, we have

cA
2b + cB

2b = Y2b

1
1 + β

[
β

π

qb
yA + β

π

qb
yB
]
= Y2b

β

1 + β

π

qb

[
yA

1 + qbyA
2b + qgyA

2g + yB
1 + qbyB

2b + qgyB
2g

]
= Y2b

βπ
[
Y1 + qbY2b + qgY2g

]
= (1 + β)qbY2b

βπqgY2g = (1 + β − πβ) qbY2b − βπY1

Solving for qg, we get

qg =
(1 + β − πβ) qbY2b − βπY1

βπY2g
. (3.47)

We can now equate (3.46) and (3.47) and solve for qb:

βY1 − qbY2b

Y2g
=

(1 + β − πβ) qbY2b − βπY1

βπY2g

β2πY1 − βπqbY2b = (1 + β − πβ) qbY2b − βπY1

βπ(1 + β)Y1 = (1 + β)qbY2b

=⇒ qb = βπ
Y1

Y2b
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which is exactly what we found in (3.30) for the case of γ = 1. Lastly, substituting for qb
in (3.46), we get

qg =
βY1 − βπY1

Y2g
= β(1 − π)

Y1

Y2g

which again is identical to what we found in (3.31) for γ = 1.
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Exercises

Exercise 3.1 (Risk-neutral and risk-loving preferences). In section 3.3.1, we discussed
the certainty equivalent and risk premium for an agent with risk-averse preferences.

(a) Imagine instead that the agent is risk-neutral, i.e., the utility function is linear,
u(c) = c. Create a graph analogous to Figure 3.2 which illustrates the case of
risk-neutral preferences. Clearly indicate the certainty equivalent!

(b) Now consider a risk-loving individual with preferences given by u(c) = c2. Again,
create a graph showing the certainty equivalent and risk premium!

Exercise 3.2 (Risk-free bond). Assume a two-period consumption-savings problem with
two possible states b and g in the second period as in Example 3.5 where an agent can
trade in Arrow bonds with payoffs given in (3.10) and (3.11). Recall the pricing equations
for the associated Arrow bonds we derived in equations (3.30) and (3.31), repeated here
for convenience:

qb = βπ

(
Y2b

Y1

)−γ

qg = β(1 − π)

(
Y2g

Y1

)−γ

(a) Consider a risk-free bond which pays one unit of consumption in period 2 irre-
spective of which state realises:

payoff(s2) =

{
1 if s2 = b
1 if s2 = g

Derive the equilibrium price q of this risk-free bond! Hint: Create a portfolio with
the same payoff and compute its price.

(b) What is the risk-free interest rate (i.e., the risk-free bond return) as a function of
q? To answer this question, recall that the one-period gross return Rt of any asset
with price p and dividend (or coupon) d is given by

Rt =
pt+1 + dt+1

pt

The return is thus the price tomorrow plus any additional payments (coupons,
dividends, etc.) divided by the price that has to be paid to purchase the asset today.

(c) Assume that in period two, the risk-averse agent gets income which is either y2b or
y2g with y2b < y2g. Would such an individual prefer to invest only in the risk-free
bond over a portfolio of Arrow bonds b and g?
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Exercise 3.3 (Complete markets with a representative agent). Consider a two-period
representative-agent (RA) economy with uncertainty about the endowment realisation
in period 2, which can be either Y2b or Y2g:

Y2 =

{
Y2b with probability π

Y2g with probability 1 − π
(E.1)

Income in the first period is deterministic and given by Y1.
The representative agent can trade in Arrow bonds which are contingent on states b

and g, and decides on consumption for period 1 as well as for states b and g in period 2.
The maximisation problem reads

max
C1, C2b, C2g, Ab, Ag

u(C1) + β
[
πu(C2b) + (1 − π)u(C2g)

]
s.t. C1 + qb Ab + qg Ag = Y1

C2b = Y2b + Ab

C2g = Y2g + Ag

where Ab and Ag are the quantities of Arrow bonds purchased in the first period.

(a) State the lifetime budget constraint for this problem.

(b) Let λ be the Lagrange multiplier on the lifetime budget constraint and derive the
first-order conditions.

(c) Derive the Euler equations for each Arrow bond.

(d) Since we have a representative-agent endowment economy, we know that the RA
will consume its entire income each period, therefore Cts = Yts for all periods t and
states s. Use this insight and the Euler equations from earlier to find an expression
for Arrow bond prices as a function of parameters and aggregate income. From
now on, assume that the RA has CRRA preferences with relative risk-aversion
parameter γ.

(e) How do these expressions compare to the prices we found in Example 3.5 for the
heterogeneous-agent case? Can you draw any conclusions about aggregation of
the economy in Example 3.5, i.e., whether it can be modelled using a representative
agent?
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4 Incomplete markets

4.1 Introduction

In the previous unit, we studied consumption-savings decisions under uncertainty in
a setting of complete markets. We concluded that households could insure against all
idiosyncratic risk, and consequently their choices looked very much like those in an
environment without uncertainty.

While in reality there is some state-contingent insurance which limits the risk associ-
ated with specific events (think of unemployment or disability insurance), we don’t think
that household can insure against every possible risk they face. In this unit, we there-
fore analyse an environment which imposes the assumption that households can only
trade assets that allow them to smooth consumption over time (as in the deterministic
consumption-savings problem), but not across different income realisations.

We do this in two settings with very different implications: First, in the certainty
equivalence model, we will see that household choices are almost identical to the
deterministic case. Conversely, in the precautionary savings model, households respond
to changes in income risk which gives rise to optimal choices and equilibria that deviate
from the deterministic environment.

4.2 Two-period problem with incomplete markets

Consider the following two-period consumption-savings problem with uncertain period-
2 income:

max
c1, c2, a2

u(c1) + βEu(c2) (4.1)

s.t. c1 + a2 = y1 (4.2)
c2 = (1 + r)a2 + y2 (4.3)

a2 ≥ − ymin

1 + r
(4.4)

y2 stochastic with y2 ≥ ymin

It is instructive to compare this to the complete markets setting we discussed in the pre-
vious unit. In both cases, the household maximises expected utility (4.1), but the budget
constraints are very different. In (4.2), the household can no longer trade contingent
bonds but instead can only save or borrow in a risk-free asset which is independent of
the income realisation next period.
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Moreover, since we do not allow the household to die in debt, we need to impose the
borrowing constraint (4.4) which is called the natural borrowing limit. Assuming that
income is stochastic and that the lowest possible income realisation is ymin ≥ 0, it states
that the household can borrow only as much as it can repay in the second period with
certainty. To see this, assume that the household chooses to borrow up to the limit so
that a2 = −ymin/(1 + r). Including interest, it will have to repay

(1 + r)a2 = (1 + r)
ymin

1 + r
= ymin

which is exactly the lowest possible period-2 income. Consequently, with y2 ≥ ymin, the
household will be able to repay its debt with certainty and will consume the remainder
of its income.

One way to solve this problem is to eliminate c1 and c2 and keep a2 as the only choice
variable. The problem then reads

max
a2

u(y1 − a2) + βE
[

u
(
(1 + r)a2 + y2

) ]
(4.5)

s.t. a2 ≥ − ymin

1 + r
(4.6)

y2 stochastic with y2 ≥ ymin

and the corresponding Lagrangian is given by

L = u(y1 − a2) + βE
[

u
(
(1 + r)a2 + y2

) ]
+ λ

[
a2 +

ymin

1 + r

]
where λ ≥ 0 is the Lagrange multiplier on the borrowing constraint (4.6). The first-order
condition for a2 is

∂L
∂a2

= −u′(y1 − a2) + β(1 + r)E
[

u′((1 + r)a2 + y2
) ]

+ λ = 0

Assuming that the the borrowing constraint is not binding and hence λ = 0, the first-
order condition can be rearranged to yield the Euler equation:

u′(y1 − a2︸ ︷︷ ︸
c1

) = β(1 + r)Eu′((1 + r)a2 + y2︸ ︷︷ ︸
c2

)
(4.7)

which is almost identical to the deterministic case, except that now we have expected
marginal utility on the right-hand side.

4.3 The certainty equivalence model

4.3.1 Quadratic utility

Up till now we haven’t made any specific assumption about preferences. In this section,
we impose that the household has a quadratic utility function given by

u(c) = αc − δ

2
c2 (4.8)

86



with parameters α > 0 and δ > 0. Since we haven’t encountered these preferences so far,
let’s spend some time discussing their properties. First, as can be seen from Figure 4.1,
the quadratic utility function has a so-called bliss point at which utility is maximised.
This point is located at c∗ = α

δ , so a realistic parametrisation needs to impose values for α

0 c *

Consumption

u *

Quadratic utility A

Figure 4.1: Quadratic utility function. A shows the bliss point where utility is maximised.

and δ such that any equilibrium consumption is to the left of this point. See appendix 4.2
for details on how these parameters influence the slope and location of the quadratic
utility function.

Second, marginal utility is given by

u′(c) = α − δc (4.9)

and is consequently linear.1 This greatly simplifies solving the household problem
because it allows us to interchange expectations and the marginal utility function, as
we’ll see shortly. Linear marginal utility gives rise to what is called certainty equivalence:
agents make choices which are identical to a setting without uncertainty in which they
receive the expected value instead of an uncertain outcome. However, this does not
imply risk neutrality! A quadratic utility function is strictly concave, and consequently
households are risk averse and demand a risk premium when facing an uncertain
gamble, as illustrated in Figure 4.2.2

Quadratic preferences are not widely used in modern macroeconomics because of
several undesirable properties:

1. As mentioned above, utility is decreasing to the right of the bliss point.

2. The utility function does not satisfy the Inada conditions because utility does
not approach −∞ as consumption goes to 0, hence there is no guarantee that the
household chooses positive consumption.

1Strictly speaking, marginal utility in this case is an affine function which is a linear function plus a constant.
We ignore this subtle distinction here since it makes no difference for our exposition.

2Recall from the previous unit that the risk premium p is the difference between the expected outcome
and the certainty equivalent, p = Ec − CE.
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cb cgCE E[c]
Consumption

u(cb)

u(cg)

E[u(c)] = u(CE)

u(E[c])

Figure 4.2: Certainty equivalent (CE) with quadratic preferences. The graph shows a situation
in which the consumer faces a gamble with potential outcomes cb and cg with equal
probability. E [ c ] is the expected consumption and CE the gamble’s certainty equiva-
lent. The risk premium is given by p = E [ c ]− CE.

3. Quadratic preferences imply an increasing relative risk aversion which is empiri-
cally implausible as richer households tend to have riskier financial portfolios.

The only reason to use quadratic preferences is that they are analytically convenient,
which we exploit below. Note, however, that quadratic utility is (often implicitly) used
in the Capital Asset Pricing Model (CAPM) in finance.

4.3.2 Household problem without uncertainty

It is instructive to solve the deterministic household problem with quadratic preferences
so that we can compare it to the scenario with uncertainty. For now, we are therefore
back to our standard two-period consumption-savings problem which we have solved
repeatedly in the last few units:

max
c1, c2, a2

u(c1) + βu(c2) (4.10)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

c1 ≥ 0, c2 ≥ 0 (4.11)

u(c) = αc − δ

2
c2

The only addition here are the explicit constraints (4.11) on consumption which has to be
non-negative, as with quadratic preferences there is nothing that would prevent agents
from potentially choosing zero or negative consumption. We will, however, ignore these
constraints and assume that they are satisfied at the optimum. The Euler equation for
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this problem is the usual one,

u′(c1) = β(1 + r)u′(c2) .

Using the marginal utility function from (4.9), it evaluates to

α − δc1 = β(1 + r)
[
α − δc2

]
.

Solving for c2 yields

α − δc1 = αβ(1 + r)− δβ(1 + r)c2

α
[
1 − β(1 + r)

]
− δc1 = −δβ(1 + r)c2

=⇒ c2 =
c1

β(1 + r)
− α

δ

1 − β(1 + r)
β(1 + r)

(4.12)

To check whether this expression is plausible, we could set β(1 + r) = 1 in which case it
reduces to c2 = c1. In the absence of any incentives to shift consumption intertemporarily,
the household will thus consume the same amount in each period.

From here we proceed as in previous units with CRRA preferences. The lifetime
budget constraint for this problem is

c1 +
c2

1 + r
= y1 +

y2

1 + r
where we can substitute for c2 using (4.12):

c1 +
1

1 + r

[
c1

β(1 + r)
− α

δ

1 − β(1 + r)
β(1 + r)

]
= y1 +

y2

1 + r

Solving for c1, we find that

c1

[
1 +

1
β(1 + r)2

]
= y1 +

y2

1 + r
+

α

δ

1 − β(1 + r)
β(1 + r)2

c1

[
1 + β(1 + r)2

β(1 + r)2

]
= y1 +

y2

1 + r
+

α

δ

1 − β(1 + r)
β(1 + r)2

c1 =
β(1 + r)2

1 + β(1 + r)2

[
y1 +

y2

1 + r

]
+

α

δ

1 − β(1 + r)
1 + β(1 + r)2 (4.13)

Lastly, we can find optimal savings by plugging (4.13) into the period-1 budget con-
straint:

a2 = y1 − c1

= y1 −
β(1 + r)2

1 + β(1 + r)2

[
y1 +

y2

1 + r

]
− α

δ

1 − β(1 + r)
1 + β(1 + r)2

=
y1 − β(1 + r)2y1 + β(1 + r)2y1 − β(1 + r)2 y2

1+r

1 + β(1 + r)2 − α

δ

1 − β(1 + r)
1 + β(1 + r)2

=
y1 − β(1 + r)y2

1 + β(1 + r)2 − α

δ

1 − β(1 + r)
1 + β(1 + r)2 (4.14)
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These expression are quite complex, so let’s look at the optimal (c1, c2) allocation for
specific parameter values.

Example 4.1 (Quadratic preferences without uncertainty). Consider the household
problem in (4.10) with optimal period-1 consumption c1 and savings a2 given by (4.13)
and (4.14), respectively.

Assuming that β = 1, y1 = y2 = 1, and the parameters governing quadratic utility
α = 20 and δ = 2, optimal allocations for three different interest rates are shown in
Figure 4.3. As we would expect, for β(1 + r) < 1 in panel (a), the household is impatient
relative to the interest rate and thus chooses to borrow (c1 > y1). Conversely, for
β(1 + r) > 1 in panel (c), the household is a saver (c1 < y1).
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(c) r = 10%

Figure 4.3: Intertemporal consumption choice with quadratic preferences and different interest
rates. A depicts the optimal allocation (c1, c2) and the corresponding indifference
curve is represented by the blue line.

■
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Example 4.2 (Quadratic preferences with β(1 + r) = 1). Consider the household
problem in (4.10) with optimal period-1 consumption c1 and savings a2 given by (4.13)
and (4.14), respectively.

Assuming that β(1 + r) = 1, the solution to the household problem simplifies con-
siderably. Applying these parameter values to (4.13), period-1 consumption is given
by

c1 =
1 + r
2 + r

[
y1 +

y2

1 + r

]
while optimal savings (4.14) become

a2 =
y1 − y2

2 + r
(4.15)

If we additionally assume that r = 0 (and thus β = 1), we find that

c1 =
1
2
(
y1 + y2

)
so the household consumes exactly half its lifetime income in the first period.

If, on the other hand, we impose y1 = y2 on top of β(1+ r) = 1, the household chooses
not to save anything as (4.15) evaluates to a2 = 0. This case in shown in Figure 4.3 panel
(b). ■

4.3.3 Household problem with uncertainty

Now that we learned how to solve the quadratic utility model without uncertainty, we
return to our setting with stochastic income. Consider the maximisation problem in
(4.5) and assume that the household has quadratic preferences given in (4.8). There is
no need to solve the problem from scratch, so we start with the Euler equation in (4.7),
assuming that the household is not at the borrowing limit. Using the marginal utility
function from (4.9), the Euler equation now reads

α − δc1 = β(1 + r)E [ α − δc2 ]

= αβ(1 + r)− δβ(1 + r)Ec2 (4.16)

Let’s inspect the second line carefully, since this is at the centre of the certainty equiva-
lence result. For any linear function f (•), we can swap the function and the expectations
operator, i.e.,

E [ f (X) ] = f (EX) .

The linear function here is the marginal utility from (4.9), and that’s why

E
[

u′(c2)
]
= u′ (Ec2) = α − δEc2 .

Note that this would not be possible with CRRA preferences, as is illustrated in Figure 4.4,
since it that case marginal utility u′(c) = c−γ is not linear and hence

E
[

c−γ
2

]
̸=
(
Ec2

)−γ .
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cb cgE[c]
Consumption

u′(cb)

u′(cg)

u′(E[c]) = E[u′(c)]

(a) Quadratic utility, u′(c) = α − δc

cb cgE[c]
Consumption

u′(cb)

u′(cg)
u′(E[c])

E[u′(c)]

(b) Log utility, u′(c) = 1
c

Figure 4.4: Marginal utility for quadratic vs. CRRA preferences. The graph shows a situation
in which the consumer faces a gamble with potential outcomes cb and cg with equal
probability and an expected value of E [ c ].

One way to approach this problem is to plug in the budget constraints (4.2) and (4.3)
into (4.16),

α − δ(y1 − a2) = αβ(1 + r)− δβ(1 + r)E [ (1 + r)a2 + y2 ]

To solve for a2, we first pull a2 out of the expectations:

α − δy1 + δa2 = αβ(1 + r)− δβ(1 + r)2a2 − δβ(1 + r)Ey2

We can do this because a2 is chosen by the household and as such is not stochastic!
Disentangling the non-stochastic terms from the random y2 is possible because marginal
utility is linear but won’t work in general. Collecting a2 terms on the left-hand side and
solving for a2, we have

a2

[
δ + δβ(1 + r)2

]
= −α + αβ(1 + r) + δy1 − δβ(1 + r)Ey2

a2δ
[
1 + β(1 + r)2

]
= δ

[
y1 − β(1 + r)Ey2

]
− α(1 − β(1 + r))

a2 =
y1 − β(1 + r)Ey2

1 + β(1 + r)2 − α

δ

1 − β(1 + r)
1 + β(1 + r)2 (4.17)

Lastly, we can use the period-1 budget constraint to find the optimal c1 under uncertainty:

c1 = y1 − a2

= y1 −
y1 − β(1 + r)Ey2

1 + β(1 + r)2 +
α

δ

1 − β(1 + r)
1 + β(1 + r)2

=
y1 + β(1 + r)2y1 − y1 + β(1 + r)Ey2

1 + β(1 + r)2 +
α

δ

1 − β(1 + r)
1 + β(1 + r)2

=
β(1 + r)2

1 + β(1 + r)2

[
y1 +

Ey2

1 + r

]
+

α

δ

1 − β(1 + r)
1 + β(1 + r)2 (4.18)
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At this point, we can compare the solution with and without uncertainty. For optimal
c1, we see that (4.13) and (4.18) are identical, except that in the latter y2 was replaced
with its expected value, Ey2. The same is true for savings in the first period, see (4.14)
and (4.17). We conclude that with quadratic preferences, the solution under uncertainty
is identical to the deterministic one if we replace the income realisation with its expected
value, giving rise to what is called certainty equivalence. Note, however, that c2 will not be
the same in both scenarios in general, unless the realised value of y2 coincides with its
expectation.

The expressions in (4.17) and (4.18) are again hard do interpret, so as before we resort
to specific numerical examples.

Example 4.3 (Consumption-savings with quadratic utility). Consider the stochastic
income problem (4.5) with quadratic utility, and optimal savings and consumption
choices given in (4.17) and (4.18), respectively.

Let y1 = Ey2 = 1, ymin = 0.5 (so that the borrowing limit is never binding), β = 1,
and assume that quadratic utility is parametrised by α = 20 and δ = 2. Figure 4.5 shows
the optimal consumption and savings levels for a range of interest rates r ∈ [−0.1, 0.1].
For r = 0, c1 and the expected consumption level Ec2 coincide, which directly follows
from the Euler equation.

0.6

0.8

1.0

1.2

1.4

C
on

su
m

pt
io

n

c1
Ec2

0.10 0.05 0.00 0.05 0.10
Interest rate r

0.4

0.2

0.0

0.2

0.4

As
se

ts
 a

2

Figure 4.5: Optional consumption and savings with quadratic utility under uncertainty, as in
Example 4.3.
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■

4.4 Precautionary savings model

In the previous section, we saw that the certainty equivalence solution leads to choices
that are no different from the deterministic case. This seems implausible as one would
expect that people facing higher risk would increase their precautionary savings to in-
sure themselves against adverse outcomes. Indeed, empirical evidence suggests that
households with more volatile income have higher savings rates. This, in addition to
all the other shortcomings of quadratic utility mentioned earlier, makes the certainty
equivalence framework unappealing in modern macroeconomics and household finance.

We therefore return to our standard CRRA framework, and assume that the household
solves

max
c1, c2, a2

u(c1) + βE
[

u(c2)
]

(4.19)

s.t. c1 + a2 = y1 (4.20)
c2 = (1 + r)a2 + y2 (4.21)

a2 ≥ − ymin

1 + r
(4.22)

y2 stochastic with y2 ≥ ymin

u(c) =

{
c1−γ

1−γ if γ ̸= 1

log(c) if γ = 1

The Euler equation in (4.7) for the CRRA case with uncertainty becomes

c−γ
1 = β(1 + r)E

[
c−γ

2

]
. (4.23)

From the above expression it is evident that in general we won’t be able to proceed as
we did in all earlier cases when we expressed c2 as a function of c1 and substituted for c2
in the lifetime budget constraint. That is not possible here since

E
[

c−γ
2

]
̸= (Ec2)

−γ .

In fact, because marginal utility is a strictly convex function, we have

E
[

c−γ
2

]
> (Ec2)

−γ

which follows from Jensen’s inequality and is illustrated in Figure 4.4 panel (b). Com-
pared to the case of certainty equivalence, the right-hand side of the Euler equation
(4.23) will be larger and hence by optimality the left-hand side has to increase as well.
The only way to increase marginal utility in period 1 is to decrease consumption, which
gives rise to precautionary savings in the presence of risk, a mechanism that was absent
in the certainty equivalence model!
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How can we proceed to solve the problem? The approach we pursued in the previous
section was to eliminate consumption and express the Euler equation in terms of savings
a2, which in this case reads

(y1 − a2)
−γ = β(1 + r)E

[ (
(1 + r)a2 + y2

)−γ
]

.

This is a nonlinear equation in a single unknown a2 which in general cannot be solved
analytically. Even imposing log preferences, our usual approach to fix complicated
problems, does not help:

1
y1 − a2

= β(1 + r)E
[

1
(1 + r)a2 + y2

]
(4.24)

In the literature, there are several ways to solve such problems:

1. Replace the terms inside the expectation with a higher-order Taylor approximation.

2. Make assumptions on the distribution of consumption in period 2, e.g., that it is
log-normal. This is common in finance where consumption is often taken to be
exogenous, but is not appealing in macroeconomics.

3. Solve the problem numerically.

These methods are beyond the scope of this course, so we will instead impose sufficiently
many assumptions to simplify the problem so that it can be solved analytically.

Example 4.4 (Precautionary savings with log preferences). Consider the household
problem in (4.19), and assume that γ = 1, β = 1, y1 = y and y2 is given by

y2 =

{
y − ϵ with prob. 1

2

y + ϵ with prob. 1
2

(4.25)

where 0 < ϵ < y. The period-2 income risk is thus symmetric with expectation Ey2 = y.
With this parametrisation, we have ymin = y − ϵ and hence the household can borrow
up to an amount of

a2 ≥ −y − ϵ

1 + r
while still being able to repay its debt with certainty.

Under these assumptions, the Euler equation (4.24) becomes

1
y − a2

= (1 + r)
[

1
2

1
(1 + r)a2 + y − ϵ

+
1
2

1
(1 + r)a2 + y + ϵ

]
(4.26)

It is now possible to extract a2 from the expectation by noting that[
(1 + r)a2 + y − ϵ

][
(1 + r)a2 + y + ϵ

]
=
[
(1 + r)a2 + y

]2 − ϵ2
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Therefore, the expectation in (4.26) can be transformed to a common denominator as
follows:

1
2

1
(1 + r)a2 + y − ϵ

+
1
2

1
(1 + r)a2 + y + ϵ

=
1
2

(1 + r)a2 + y + ϵ[
(1 + r)a2 + y

]2 − ϵ2
+

1
2

(1 + r)a2 + y − ϵ[
(1 + r)a2 + y

]2 − ϵ2

=
(1 + r)a2 + y[

(1 + r)a2 + y
]2 − ϵ2

The Euler equation therefore simplifies to

1
y − a2

= (1 + r)
(1 + r)a2 + y[

(1 + r)a2 + y
]2 − ϵ2

(4.27)

which is a quadratic equation in a2. Solving for a2 is straightforward but involves a lot
of algebra, so we leave it to appendix 4.1, where we find that optimal a2 is given by

a2 = − (2 − r)y
4(1 + r)

+

√
(2 + r)2y2 + 8ϵ2

4(1 + r)
(4.28)

It can be quite challenging to assess whether such a complicated expression is correct, so
the usual approach is to verify some basic relationships or check a few special cases.

First, we see that a2 is increasing in ϵ, which is intuitively plausible as the household
will want to increase precautionary savings when period-2 income is more risky.

Second, we can inspect the case when r = 0 so that a2 simplifies to

a2 = −2y
4

+

√
22y2 + 8ϵ2

4

> −2y
4

+

√
22y2

4
= −2y

4
+

2y
4

= 0

Without uncertainty, we know that a2 = 0 because r = 0, β = 1 and y1 = y2 = y so the
household has no reason to save. The above expression tells us that in the presence of
risk, the household will save a strictly positive amount due to its precautionary savings
motive.

Third, we can inspect the corner case of ϵ = 0 (with r no longer set to zero). The
solution for a2 then becomes

a2 = − (2 − r)y
4(1 + r)

+

√
(2 + r)2y2

4(1 + r)

= − (2 − r)y
4(1 + r)

+
(2 + r)y
4(1 + r)

=
−2y + ry + 2y + ry

4(1 + r)

=
1
2

r
1 + r

y (4.29)
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Recall that in the setting with log preferences, β = 1 and no uncertainty, in previous
units we found that

c1 =
1
2

[
y +

y
1 + r

]
=

1
2

2 + r
1 + r

y ,

which implies that

a2 = y − c1 = y − 1
2

2 + r
1 + r

y =
2(1 + r)
2(1 + r)

y − 2 + r
2(1 + r)

y =
2y + 2ry − 2y − ry

2(1 + r)

=
1
2

r
1 + r

y

Reassuringly, this expression is identical to (4.29). ■

We can use numerical methods to go beyond what we were able to do in the previous
example without having to impose as many assumptions. To illustrate, one interesting
question is how precautionary savings depends on the degree of risk aversion.

Example 4.5 (Precautionary savings and risk aversion). Consider the setting from
Example 4.4, except that we no longer impose γ = 1. How does the household respond
to increases in ϵ, and how do these responses depend on a household’s risk aversion?

Given how we model risky income y2 in (4.25), an increase in ϵ represents a mean-
preserving spread. Recall from the previous unit that

Ey2 =
1
2
(y − ϵ) +

1
2
(y + ϵ) = y

so Ey2 does not respond to changes in ϵ. On the other hand, the variance is given by

Var ( y2 ) =
1
2
[
y − ϵ − y

]2
+

1
2
[
y + ϵ − y

]2
= ϵ2

so an increase in ϵ makes income more risky. In a certainty equivalence world, household
choices would remain unchanged by a mean-preserving spread, but this is not the case
in the precautionary savings model.

Figure 4.6 makes this point. Optimal assets a2 are increasing in ϵ, and more so for
higher levels of risk aversion. Since we assume that β = 1, r = 0 and y1 = Ey2 = y,
the only incentive to save in this model is for precautionary reasons, and these savings
increase in a riskier environment.
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Figure 4.6: Precautionary savings as a function of the RRA coefficient γ and income risk for
β = 1, r = 0.

■

Up until now, our analysis was in partial equilibrium. How would the general
equilibrium look in this setting? We illustrate one such equilibrium in the next example.

Example 4.6 (General equilibrium with precautionary savings). Consider an economy
populated by an arbitrary number of households who maximise the problem in (4.19)
and have income y1 = y and y2 given by

y2 =

{
y − ϵ with prob. π

y + ϵ with prob. 1 − π
(4.30)

What is the equilibrium interest rate in this economy?
First, note that all households are ex ante identical. Therefore, in equilibrium we

cannot have that some households are borrowers while others choose to be savers. We
are thus looking for an autarky solution where each household consumes its endowment
in each period.

To do this, we proceed in the same way as we did in the first unit. In order to find
an interest rate that satisfies each household’s optimality condition, we use the Euler
equation

y−γ = β(1 + r)E
[

y−γ
2

]
evaluated at c1 = y and c2 = y2. Using the definition of y2, the Euler equation can be
written as

y−γ = β(1 + r)
[
π(y − ϵ)−γ + (1 − π)(y + ϵ)−γ

]
(4.31)

The equilibrium gross interest rate is thus given by

1 + r = β−1 y−γ

E
[

y−γ
2

] = β−1 y−γ

π(y − ϵ)−γ + (1 − π)(y + ϵ)−γ
(4.32)
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Even without evaluating this expression, we can get the intuition by looking at Figure 4.4
panel (b) again. Because the marginal utility is a convex function, E

[
y−γ

2

]
will increase

as we increase ϵ, and consequently the equilibrium interest rate has to fall. With riskier
income, households would want to increase precautionary savings, so a lower interest
rate is required to disincentivise them from doing so. This effect is stronger for higher
values of the relative risk aversion γ, as illustrated in Figure 4.7.
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Figure 4.7: Equilibrium interest rate for Example 4.6 as a function of income risk and the RRA
coefficient γ for β = 1, y = 1 and π = 1

2 .

■

4.5 Main takeaways

In this unit, we studied household choices under uncertainty with incomplete markets
in two different settings.

First, in the certainty equivalence model, we concluded that

1. Optimal choices were identical to those without uncertainty if we replaced deter-
ministic values with their expected outcomes.

2. Households did not respond to changes in risk other than changes in the mean. In
particular, their optimal choices did not respond to increases in variance.

3. The certainty equivalence model allows for analytical solutions but has many
drawbacks that make it less useful for modern macroeconomic modelling.

Second, we studied the precautionary savings model that arises with CRRA prefer-
ences and uncertainty. We found that

1. In the presence of risk, households choose to increase their precautionary savings.

2. Optimal solutions no longer coincide with their deterministic counterparts in
general.
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3. While these models form the backbone of modern macroeconomics, they usually
don’t allow for analytical solutions and are instead computed numerically.

Appendix 4.1: Detailed solution for Example 4.4

This section contains the detailed steps to solve for optimal savings a2 in Example 4.4.
We begin with the simplified Euler equation from (4.27), repeated here for convenience:

1
y − a2

= (1 + r)
(1 + r)a2 + y[

(1 + r)a2 + y
]2 − ϵ2

To solve for a2 (the only unknown), we bring each denominator to the other side, multiply
out all expressions and collection terms to get a standard quadratic equation in a2:[

(1 + r)a2 + y
]2 − ϵ2 = (y − a2)(1 + r)

[
(1 + r)a2 + y

]
(1 + r)2a2

2 + 2(1 + r)ya2 + y2 − ϵ2 = −(1 + r)2a2
2 + (1 + r)2ya2 + (1 + r)y2 − (1 + r)ya2

Collecting terms, we get

2(1 + r)2a2
2 + (1 + r)

[
3 − (1 + r)]ya2 − ry2 − ϵ2 = 0

2(1 + r)2a2
2 + (1 + r)(2 − r)ya2 − ry2 − ϵ2 = 0

This is a quadratic equation in a2,

Aa2
2 + Ba2 + C = 0

with

A = 2(1 + r)2

B = (1 + r)(2 − r)y

C = −ry2 − ϵ2

which has two solutions,

a2 = − B
2A

±
√

B2 − 4AC
2A

Plugging in these values and simplifying yields

a2 = − (1 + r)(2 − r)y
2 · 2(1 + r)2 ±

√[
(1 + r)(2 − r)y

]2 − 4 · 2(1 + r)2 (−ry2 − ϵ2)

2 · 2(1 + r)2

= − (2 − r)y
4(1 + r)

±
√
(2 − r)2y2 + 8 (ry2 + ϵ2)

4(1 + r)
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Next, we simplify the expression inside the square root:

(2 − r)2y2 + 8
(
ry2 + ϵ2) = 4y2 − 4ry2 + r2y2 + 8ry2 + 8ϵ2

= 4y2 + 4ry2 + r2y2 + 8ϵ2

= (2 + r)2y2 + 8ϵ2

Finally, the solution for a2 is

a2 = − (2 − r)y
4(1 + r)

±
√
(2 + r)2y2 + 8ϵ2

4(1 + r)

Using economic intuition, we can exclude the solution in which a2 is always negative
irrespective of the interest rate, so we are left with

a2 = − (2 − r)y
4(1 + r)

+

√
(2 + r)2y2 + 8ϵ2

4(1 + r)

Appendix 4.2: Parametrisation of quadratic preferences

In this section, we illustrate how the parameters governing a generic quadratic function
map into the parameters of the quadratic utility function in (4.8). A generic quadratic
function has three parameters, denoted here by A, B and C, where the functional form is
given by

f (x) = A(x − B)2 + C (4.33)

In this case, A controls the slope of the function, while B shifts its extremum (maximum
or minimum) horizontally, and C shifts the function vertically. The extremum where
the function is maximised (for negative A) or minimised (for positive A) is given by
(x∗, y∗) = (B, C). This is illustrated in Figure 4.8.

0 x * = B
x

0

y * = C

y
=

f(x
)

A = 0.5
A = 1.0
A = 2.0

Figure 4.8: Quadratic utility functions for various slope parameters for B = C = 1.
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Expanding the quadratic term in (4.33), we see that

f (x) = A(x − B)2 + C

= A(x2 − 2xB + B2) + C

= Ax2 − 2ABx + AB2 + C

If we compare this to our quadratic utility function in (4.8), we find that

α = −2AB

− δ

2
= A

0 = AB2 + C

We see that δ = −2A maps directly into the parameter governing the slope, while
α = −2AB influences both the slope and the horizontal location of the utility function.
Moreover, it’s now easy to see that α/δ = −2AB/(−2A) = B corresponds to the point
where utility attains its global maximum. Note that we omit the constant AB2 + C from
the quadratic utility function since it has no effect on optimal choices.
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Exercises

Exercise 4.1 (Interest rate and income risk). Consider the following household problem
with log preferences and income risk:

max
c1, c2, a2

log(c1) + βE
[

log(c2)
]

(E.1)

s.t. c1 + a2 = y (E.2)
c2 = (1 + r)a2 + y2 (E.3)

where period-2 income is given by

y2 =

{
y − ϵ with prob. 1

2

y + ϵ with prob. 1
2

(E.4)

with 0 < ϵ < y. You can ignore any borrowing constraints for this exercise.

(a) Derive the Euler equation for this problem.

(b) Assume that the economy is populated by an arbitrary number of ex ante identical
households. Derive the equilibrium interest rate as a function of the variance of
period-2 income, Var ( y2 ).

Note: With this parametrisation, it is possible to obtain an intuitive expression for
r.

(c) Let β = 1 and y = 1. Plot the equilibrium interest rate on the y-axis against the
income variance Var ( y2 ) on the x-axis. Provide an intuition for the slope of this
relationship!

Exercise 4.2 (General equilibrium with ex ante heterogeneity). Consider an economy
with two households, A and B, who solve

max
c1, c2, a2

c1−γ
1

1 − γ
+ βE

[
c1−γ

2
1 − γ

]
s.t. c1 + a2 = y

c2 = (1 + r)a2 + y2

a2 ≥ 0 (E.5)

where we impose the no-borrowing constraint (E.5). Period-2 income for household A is
given by

yA
2 =

{
y − ϵ with prob. 1

2

y + ϵ with prob. 1
2

with 0 < ϵ < y
2 , whereas for household B it’s

yB
2 =

{
y − 2ϵ with prob. 1

2

y + 2ϵ with prob. 1
2
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(a) Assume that we are looking for an autarky equilibrium in which each household
consumes its endowment.

Derive the equation that pins down the equilibrium interest rate!

(b) Let β = 1, γ = 2, y = 1 and ϵ = 0.1. Compute the value for the equilibrium
interest rate!

(c) Now assume that period-2 income for A is given by

yA
2 =

{
y − 1.5ϵ with prob. 1

2

y + 1.5ϵ with prob. 1
2

Using the same parametrisation as above, how does the autarky equilibrium
interest rate change?

Exercise 4.3 (Mean-preserving spread in general equilibrium). Consider the consumption-
savings problem under uncertainty,

max
c1, c2, a2

u(c1) + βEu(c2)

s.t. c1 + a2 = y
c2 = (1 + r)a2 + y2

where y2 is stochastic such that

y2 =

{
y − ϵ with prob. 1

2

y + ϵ with prob. 1
2

and 0 < ϵ < y
2 . You can ignore any borrowing constraints in this exercise. The Euler

equation for this problem is the usual

u′(c1) = β(1 + r)Eu′(c2) .

We want to solve for general equilibrium with autarky, i.e., each household consumes its
endowment each period.

(a) Write down the Euler equation used to pin down the equilibrium interest rate for
the scenario in which the household has

(1) quadratic utility

(2) CRRA utility

(b) Illustrate the effect of a mean-preserving spread if period-2 income is instead given
by

y2 =

{
y − 2ϵ with prob. 1

2

y + 2ϵ with prob. 1
2

(E.6)

using graphs that are similar to Figure 4.4, one for the quadratic and one for the
CRRA case. On the x-axis, indicate the points y, y ± ϵ and y ± 2ϵ, and plot the
marginal utility and its expected value.
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(c) What happens to the expectation in the Euler equation in the quadratic and CRRA
cases? How do optimal savings respond? How does the equilibrium interest rate
respond?

Provide a qualitative answer and the intuition for the underlying mechanism!

Exercise 4.4 (Equilibrium with government transfers). Consider an economy with two
households, A and B, who solve

max
c1, c2, a2

c1−γ
1

1 − γ
+ βE

[
c1−γ

2
1 − γ

]
s.t. c1 + a2 = y

c2 = (1 + r)a2 + y2

Moreover, assume that these households have perfectly negatively correlated income as
shown in Table E.1, where 0 < ϵ < y and each outcome has a probability of π = 1

2 .

Household Income in t = 1 Income in t = 2

State b (prob. 1
2 ) State g (prob. 1

2 )

A y y − ϵ y + ϵ
B y y + ϵ y − ϵ

Table E.1: Income in economy for Exercise 4.4.

(a) State the Euler equation characterising the solution to this problem. Explain why
the Euler equation is the same for A and B.

(b) Derive the equilibrium condition for the interest rate in this economy.

(c) Let β = 1, γ = 2, y = 1 and ϵ = 0.5. Compute the equilibrium interest rate for this
economy.

(d) Assume now that a redistributive government levies a lump-sum tax of ϵ
2 on the

lucky household (which can be either A or B) and transfers these funds to the
unlucky one.

How does this policy change equilibrium savings? How is the equilibrium interest
rate affected?

Exercise 4.5 (Complete vs. incomplete markets). Consider an economy with two house-
holds, A and B, who have log preferences and face income uncertainty in the second
period:

max
c1, c2, a2

log(c1) + βE
[

log(c2)
]

s.t. c1 + a2 = y
c2 = (1 + r)a2 + y2
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where y2 is stochastic as shown in Table E.2 with 0 < ϵ < y
2 . You can disregard any

borrowing constraints.
Both households are ex ante identical, but ex post their income realisations in period 2

are perfectly negatively correlated so that in the aggregate, income is constant at Y.

Household Income in t = 1 Income in t = 2

State b (prob. 1
2 ) State g (prob. 1

2 )

A y y − ϵ y + ϵ
B y y + ϵ y − ϵ

Aggregate Y Y Y

Table E.2: Income in economy for Exercise 4.5.

(a) Write down an equation with a single unknown, r, that allows you to determine
the equilibrium interest rate (you don’t need to explicitly solve for r).

(b) Can you say whether β(1 + r) > 1, β(1 + r) = 1 or β(1 + r) < 1? What is the
intuition behind your finding?

(c) Assume that the households are allowed to trade in Arrow bonds contingent on the
states b and g with prices qb and qg, respectively, i.e., there are complete markets
like in unit 3. Each household now solves

max
c1, c2b, c2g

log(c1) + βE
[

log(c2)
]

s.t. c1 + qbc2b + qgc2g = y + qby2b + qgy2g

where

y2b =

{
y − ϵ for household A
y + ϵ for household B

and

y2g =

{
y + ϵ for household A
y − ϵ for household B

What are the equilibrium allocations (ci
1, ci

2b, ci
2g) for each household i = A, B?

How do these compare to the incomplete markets equilibrium discussed above?

Hint: The complete markets part of this exercise is almost identical to Example 6 of
unit 3.

(d) Solve for the risk-free interest rate in the complete markets economy. How does it
compare to the equilibrium interest rate in the incomplete markets setting?

(e) Consider a mean-preserving spread for period-2 income such that income now
fluctuates with ±2ϵ instead of ±ϵ.

How do the equilibrium allocations and prices in the complete markets economy
respond? Provide an economic intuition for your answer!
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5 Overlapping generations models

5.1 Introduction

In unit 2, we studied life cycle models in which agents live for two or more periods.
However, our analysis was purely in partial equilibrium. In order to take such models
to general equilibrium, we need to impose an overlapping generations (OLG) structure
in which at any point in time, multiple cohorts of different ages are alive in the economy.

In the OLG models discussed in this unit, we will restrict ourselves to agents who live
for only two or three periods. In the simplest case of two periods, there are two cohorts
which we call young (1st period of life denoted with subscript 1) and the old (2nd period
of life denoted with subscript 2). This situation is depicted in Figure 5.1. At any time t

t t+1 t+2 t+3 t+4
Time

t

t+1

t+2

t+3

C
oh

or
t

y1, t y2, t + 1

y1, t + 1 y2, t + 2

y1, t + 2 y2, t + 3

y1, t + 3 y2, t + 4

Figure 5.1: Cohort structure in OLG model with agents who live for two periods. (y1, y2) denotes
endowments agents receive when young and old, respectively.

exactly two cohorts are alive in the economy: the old (cohort born in t − 1) who receive
the endowment y2,t and the young (cohort born in t) who receive y1,t.

In what follows, we impose that there is only one household in each cohort. We
could call this setup a “representative cohort” model because in principle we allow for
arbitrarily many identical households in each cohort as long as the cohorts are of equal
size.

We assume that the economy itself exists indefinitely and is stationary, i.e., all aggre-
gate variables and the distribution of households are invariant over time. We perform
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our analysis based on a snapshot at some arbitrary t and will omit the subscript t in the
remainder of this unit.

5.2 Endowment economies without a government

5.2.1 Economy with two overlapping cohorts

So far, we haven’t made any assumptions about the endowment. Let’s first examine the
case when y2 = 0 and the household maximizes

max
c1, c2, a2

u(c1) + βu(c2)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 (5.1)

This is a well-defined problem in partial equilibrium, but does not work in general
equilibrium in a pure endowment economy. To see this, we first conclude that the young
household is forced to choose positive savings a2 > 0, as otherwise it will starve in the
second period — there is no other income in (5.1). Because there are no assets in positive
net supply, any savings must be matched by borrowing of the other household in the
economy. However, the only other household alive is the old household, which cannot
borrow because it won’t be alive next period to repay that debt. Consequently, the
young household will be unable to save and studying this economy is not particularly
insightful.

Of course, this is an artefact of assuming that households live for only two periods
which we relax in the next section. In a full-fledged model with 60 periods similar to
those we studied in unit 2, young households would want to borrow while middle-aged
ones would want to save for retirement. We would consequently observe inter-cohort
trade even in a pure endowment economy.

However, complex OLG models with realistic demographics are beyond the scope
of this course. We will therefore examine other ways for consumption smoothing in
simplified settings with only two cohorts:

1. The most obvious one is to give households positive endowments when old, e.g.,
due to some (unmodelled) social security system.

2. We can introduce a government which facilitates intergenerational transfers, a
topic we cover in the next section.

3. Lastly, we can introduce capital which is an asset in positive net supply and allows
households to save even if no other agent in the economy wants to borrow. Even
though this is the most plausible assumption, it also adds complexity, so we don’t
cover this type of model in this unit.

In the remainder of this section, we examine the autarky equilibrium that arises if
households receive positive endowments in both periods.
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Example 5.1 (Endowments in both periods). Consider a household which lives for
two periods and solves the following problem:

max
c1, c2, a2

u(c1) + βu(c2)

s.t. c1 + a2 = y1

c2 = (1 + r)a2 + y2

where y1 > 0 and y2 > 0 are income received when young and old, respectively.
We have solved this problem multiple times, so we immediately conclude that the

Euler equation is given by
u′(c1) = β(1 + r)u′(c2)

As discussed above, the old household can neither borrow (because it would not be able
to repay its debt), nor does it want to save since it will not be around to consume these
savings later. Consequently, the young household will not be able to save or borrow in
equilibrium either. The only equilibrium we are able to find in this setting is therefore
the autarky equilibrium with c1 = y1 and c2 = y2. The equilibrium interest rate r is thus
pinned down by

r =
u′(y1)

βu′(y2)
− 1 .

Imposing CRRA preferences, this expression can be written as

r =
1
β

y−γ
1

y−γ
2

− 1 =
1
β

[
y2

y1

]γ

− 1 .

■

The above example does not introduce anything novel compared to the two-period
consumption-savings problem we covered in the previous units, so let’s next introduce
a third period of life.

5.2.2 Economy with three overlapping cohorts

Extending the environment from the previous section to agents who life for three periods
opens up the possibility of equilibria with trade. In each period t, the economy is now
populated by three generations, and we can interpret each period as representing 20–25
years. This environment is depicted in Figure 5.2.

Household problem (partial equilibrium). If we ignore general equilibrium for the
moment, then the household problem in this setting is exactly the same as discussed
in unit 2. For completeness, let’s work through the solution again, assuming that the
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y1, t + 3 y2, t + 4 y3, t + 5

Figure 5.2: Cohort structure in OLG model with agents who live for three periods and receive
endowments (y1, y2, y3).

household solves

max
c1, c2, c3, a2, a3

u(c1) + βu(c2) + β2u(c3)

s.t. c1 + a2 = y1

c2 + a3 = (1 + r)a2 + y2

c3 = (1 + r)a3 + y3

As before, in the terminal period 3, the household is not allowed to borrow because it
won’t be around to repay its debt, and it has no incentive to save. However, we can find
equilibria where households of ages 1 and 2 engage in lending/saving and borrowing
because the age-2 household wants to save for retirement in period 3, while a household
of age 1 (young worker) faces an upward-sloping income trajectory and wants to borrow
against future income. We illustrate such a scenario below.

The consolidated lifetime budget constraint is given by

c1 +
c2

(1 + r)
+

c3

(1 + r)2 = y1 +
y1

(1 + r)
+

y3

(1 + r)2

so that we can eliminate savings a2 and a3 and state the Lagrangian only in terms of
consumption,

L = u(c1) + βu(c2) + β2u(c3) + λ

[
y1 +

y1

(1 + r)
+

y3

(1 + r)2 − c1 −
c2

(1 + r)
− c3

(1 + r)2

]
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This gives rise to the usual first-order conditions,

∂L
∂c1

= u′(c1)− λ = 0

∂L
∂c2

= βu′(c2)−
λ

1 + r
= 0

∂L
∂c3

= β2u′(c2)−
λ

(1 + r)2 = 0

which we can combine to get two Euler equations which characterise the intertemporal
consumption choice between ages 1 and 2, as well as ages 2 and 3:

u′(c1) = β(1 + r)u′(c2)

u′(c2) = β(1 + r)u′(c3)

With CRRA preferences, these Euler equations become,

c−γ
1 = β(1 + r)c−γ

2

c−γ
2 = β(1 + r)c−γ

3

We can then express c2 and c3 as a function of c1,

c2 =
[
β(1 + r)

] 1
γ c1

c3 =
[
β(1 + r)

] 1
γ c2 =

[
β(1 + r)

] 2
γ c1

These can then be substituted into the lifetime budget constraint to solve for c1 as a
function of exogenous income, parameters and the equilibrium interest rate that remains
to be determined. For example, for log preferences with γ = 1, optimal consumption is

c1 =
1

1 + β + β2

[
y1 +

y2

(1 + r)
+

y3

(1 + r)2

]
(5.2)

c2 =
β(1 + r)

1 + β + β2

[
y1 +

y2

(1 + r)
+

y3

(1 + r)2

]
(5.3)

c3 =
β2(1 + r)2

1 + β + β2

[
y1 +

y2

(1 + r)
+

y3

(1 + r)2

]
(5.4)

General equilibrium. In order to find the equilibrium interest rate r we need to
impose market clearing in the savings market. Because each cohort consists of a single
representative household, this requires that the amount a household wishes to borrow (or
lend) at age 1 has to be identical to the amount a household chooses to lend (or borrow)
at age 2 so that in the aggregate, savings are exactly zero.1 Therefore, in equilibrium we
require that

−a2 = a3

1Recall that it a model without physical capital or government bonds, assets have to be in zero net supply
in the aggregate.
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or, plugging in the expressions for the budget constraints at ages 1 and 3,

−(y1 − c1) =
1

1 + r
(y3 − c3)

Once we plug in the optimal c1 and c3 from (5.2) and (5.4), this becomes a nonlinear
equation in r that has no obvious analytical solution. We therefore need to resort to
numerical methods to find the equilibrium interest rate, which we do next.

Example 5.2 (General equilibrium with three cohorts). Continuing with the three-
cohort setup from above, let β = 1, γ = 1 and assume that the household faces an
upward-sloping income profile at ages 1 and 2 (which represent working age) with
y1 = 1, y2 = 2. We impose that in the terminal (retirement) period, the household
receives a fraction ρ = y3/y2 of its age-2 income where ρ < 1. The household therefore
has an incentive to save for retirement, whereas it has a incentive to borrow at age 1 as it
faces an upward-sloping income profile.

The optimal borrowing/savings levels for this economy are shown in Figure 5.3, and
the corresponding equilibrium interest rate is plotted in Figure 5.4. We see that the
household wants to save more for retirement if the replacement rate ρ is low, say 25%
of age-2 income. Correspondingly, in equilibrium a young household has to be willing
to borrow a higher amount to clear the savings market, so the equilibrium interest rate
needs to decrease (it is in fact negative) to support this level of borrowing.
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(a) Saving at age 2: a3
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(b) Borrowing at age 1: a2

Figure 5.3: Borrowing/saving plotted against the replacement rate ρ = y3/y2 of retirement
income.
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Figure 5.4: Equilibrium interest rate plotted against the replacement rate ρ = y3/y2 of retirement
income.

5.3 OLG with a government

5.3.1 Government debt

In the previous section, we saw that if agents lived for only two periods, the only possible
equilibrium was one without trade. One way to allow for saving is to provide an asset
in positive net supply so that households can save even if no one in the economy wants
to borrow. Such an asset could be physical capital if we are willing to add production.
Alternatively, in a pure endowment economy we can introduce government debt which
households can hold in order to save for future periods. The infinitely-lived government
thus enables households with (short) finite lives to smooth consumption.

Assume that the government has a stock of debt bt on which it pays an interest rate of
r. Additionally, the government taxes households to raise revenue which can be used to
pay interest or pay down debt. Its dynamic budget constraint is therefore given by

bt+1 + τ︸ ︷︷ ︸
Revenues

= (1 + r)bt︸ ︷︷ ︸
Debt repayment

where τ is the tax revenue and bt+1 is newly issued debt in period t. Assuming that the
debt level is constant, the government budget simplifies to

b + τ = (1 + r)b =⇒ τ = rb (5.5)

The government thus rolls over its stock of debt and needs to raise just enough revenue
to service the interest payments rb. In the next example, we examine how government
debt can help households transfer resources between their two periods of life.

Example 5.3 (Endowment economy with government debt). Assume that households
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solve the following two-period problem:

max
c1, c2, a2

log(c1) + β log(c2)

s.t. c1 + a2 = y1 − τ

c2 = (1 + r)a2

The household can choose to save an amount a2 in government debt and has to pay
income taxes τ when young.2 As usual, the household takes the interest rate r and the
income tax τ as given, and these will be determined in general equilibrium.

Household problem (partial equilibrium). This is a standard consumption-savings
problem with the lifetime budget constraint given by

c1 +
c2

1 + r
= y1 − τ .

The Euler equation governing the optimal intertemporal consumption decision is

1
c1

= β(1 + r)
1
c2

. (5.6)

Solving for c2 = β(1 + r)c1 and plugging into the lifetime budget constraint, we find
that

c1 +
β(1 + r)c1

1 + r
= y1 − τ

=⇒ c1 =
1

1 + β

[
y1 − τ

]
(5.7)

Consequently, optimal bond savings are given by

a2 = y1 − τ − c1 = y1 − τ − 1
1 + β

[
y1 − τ

]
=

β

1 + β

[
y1 − τ

]
. (5.8)

General equilibrium. We take the stock of debt b as the government’s policy variable
and determine the remaining two unknowns, τ and r, such that the government budget
balance and the households’ optimality conditions are satisfied — after all, the house-
holds must be willing to hold this amount of debt at the equilibrium interest rate given
their disposable income y1 − τ. Note that we could have alternatively taken τ as the
policy variable and determined b and r in equilibrium, arriving at the same solution.

Since we assume there is a single (representative) young household, bond market
clearing requires that

a2 = b .
2Income taxes are usually proportional to income, i.e., the tax is given by τ · y1. Since the endowment

is exogenous in this example, it makes no difference whether the tax is modelled as lump-sum or a
fraction of y1.
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There are several ways to find r and τ from here. For example, imposing bond market
clearing in in (5.8), we get

b =
β

1 + β

[
y1 − τ

]
.

Using the government budget constraint (5.5) to substitute for τ we get an equation in
one unknown,

b =
β

1 + β

[
y1 − rb

]
which we can solve for r:

1 + β

β
b = y1 − rb

1 + β

β
=

y1

b
− r

=⇒ r =
y1

b
− 1 + β

β
(5.9)

Finally, plugging r back into the government budget constraint (5.5) yields the equilib-
rium tax rate,

τ = rb = y1 −
1 + β

β
b . (5.10)

Note that we could have alternatively found the equilibrium interest from the households
Euler equation (5.6) after plugging in the household and government budget constraints
as well as bond market clearing:

1
y1 − b − rb

= β(1 + r)
1

(1 + r)b
1

y1 − (1 + r)b
= β

1
b

y1 − (1 + r)b =
b
β

y1

b
− (1 + r) =

1
β

=⇒ r =
y1

b
− 1 + β

β

The optimal consumption while young can be obtained by plugging the income tax
(5.10) into (5.7):

c1 =
1

1 + β

[
y1 − τ

]
=

1
1 + β

[
y1 −

(
y1 −

1 + β

β
b
)]

=
1
β

b (5.11)

Lastly, we find the optimal consumption in old age by substituting r from (5.9) into the
budget constraint:

c2 = (1 + r)b =

[
1 +

y1

b
− 1 + β

β

]
b = y1 −

1
β

b (5.12)

115



These consumption choices are depicted in Figure 5.5 as a function of the debt level
which we express relative to income, b/y1. The corresponding equilibrium income tax
τ is shown in panel (a) of Figure 5.6, while the equilibrium interest rate is depicted in
panel (b).
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Figure 5.5: Consumption plotted against the debt-to-income ratio b/y1 for β = 1 and y1 = 1.
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Figure 5.6: Tax level and equilibrium interest rate plotted against the debt-to-income ratio b/y1
for β = 1 and y1 = 1.

The finding that the interest rate is extremely high for low levels of debt seems
puzzling. At least in partial equilibrium, one would conjecture that if the government
maintains a low level of debt, and thus young households should choose to save little,
the required interest rate needs to be very low. However, another way to bring down
savings to be in line with low government debt is to tax away the young household’s
endowment, which is what happens in this equilibrium.

To illustrate, let β = 1, y1 = 1, and assume that the government wants to impose
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a debt/income level of 0.3 which corresponds to the left-most point in the preceding
figures. To do this, the government sets an income tax of τ = 0.4. Moreover, the
prevailing equilibrium interest rate is given by r = 1.33. The household is thus left with a
disposable income of y1 − τ = 0.6 and saves half of it as prescribed by (5.8). Next period,
it consumes its gross asset return which is given by c2 = (1 + r)a2 = 2.33 × 0.3 = 0.7.
The government has to pay r a2 = 0.4 in interest payments which are exactly offset by
the income tax it collects to balance the government budget. ■

So far, we treated the government debt level b as exogenous. In reality, this is a policy
variable that the government can control, so the question arises which debt level the
government should choose.

Example 5.4 (Optimal level of government debt). Consider the economy in Example
5.3, where we took the level of government debt b as given and solved for the equilibrium
allocation and interest rate. Figure 5.5 illustrates that households make vastly different
consumption choices depending on the debt-to-income ratio, so a natural follow-up
question pertains to the optimal level of debt.

Assuming that the government values the welfare of all cohorts equally, we can pin
down the welfare-maximising level of debt by maximising the utility of any single cohort.
The government thus solves

max
b∈[0, βy1]

log(c∗1) + β log(c∗2)

where c∗1 and c∗2 are the optimal households choices given b, which themselves are
functions of b given by (5.11) and (5.12),

c∗1 =
1
β

b

c∗2 = y1 −
1
β

b

The government thus perfectly anticipates that households adjust their choices optimally
as it varies the level of debt. Note that we also impose the constraint that b ∈ [0, βy1].
This ensures that neither c1 nor c2 are negative (which would not be optimal anyway).

Plugging in the optimal consumption choices, the government maximises

max
b∈[0, βy1]

log
(

β−1b
)
+ β log

(
y1 − β−1b

)
.

Figure 5.7 illustrates this maximisation problem for β = y1 = 1.
Note that we can get rid of the additive constant that comes from log

(
β−1b

)
=

log(b)− log(β), so the problem can equivalently be stated as

max
b∈[0, βy1]

log (b) + β log
(

y1 − β−1b
)

.
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Figure 5.7: Household utility as a function of debt-to-income ratio for β = 1 and y1 = 1.

We set up the Lagrangian in the usual way, taking into account the two constraints b ≥ 0
and b ≤ βy1 with Lagrange multipliers λ1 and λ2, respectively:

L = log (b) + β log
(

y1 − β−1b
)
+ λ1b + λ2 (βy1 − b)

For an interior solution, the first-order condition is given by

∂L
∂b

=
1
b
− β

β−1

y1 − β−1b
= 0

since we know that at the optimum the Lagrange multipliers are λ1 = λ2 = 0. Solving
the above equation for b is straightforward:

1
b
=

1
y1 − β−1b

b = y1 −
1
β

b

1 + β

β
b = y1

=⇒ b∗ =
β

1 + β
y1

where we use a star to denote the welfare-maximising debt level, b∗. Recalling the optimal
expression for savings in a two-period model without borrowing constraints, it may not
come as a surprise that the optimal debt level exactly replicates this savings level. By the
same logic, optimal consumption at the optimal debt level is

c1 =
1
β

b∗ =
1

1 + β
y1

c2 = y1 −
1
β

b∗ =
β

1 + β
y1
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Note that c1 again coincides with what the household would have optimally chosen if it
was free to save.

Finally, the equilibrium interest rate is obtained by plugging b∗ into (5.9),

r =
y1

b∗
− 1 + β

β
=

y1
β

1+β y1
− 1 + β

β
= 0

and the income tax τ follows from the government budget constraint, τ = r · b∗ = 0.
The equilibrium at the optimal debt level is indicated by dotted lines in Figure 5.5 and

Figure 5.6 for the parameters β = y1 = 1. Because the household does not discount fu-
ture utility, the optimal consumption allocation in this case prescribes that the household
consumes exactly half of its endowment y1 in each period.

■

5.3.2 Pension system with exogenous labour supply

Instead of issuing bonds, the government can also use the tax and transfer system to
redistribute resources across cohorts. The prime example of such redistribution is the
pension system, which we discuss in the next example.

Example 5.5 (Endowment economy with PAYGO pension system). Consider a house-
hold which lives for two periods and solves

max
c1, c2, a2

u(c1) + βu(c2)

s.t. c1 + a2 = y1 − τ

c2 = (1 + r)a2 + τ

where 0 < τ < y1 is a tax levied on the young cohort which we can interpret as a payroll
tax on income earned while young.3

Compared to Example 5.1, nothing changes in terms of savings since there is no asset
in positive net supply. The old still cannot borrow or save, and hence neither can the
young. However, now consumption in old age is financed by the transfer τ. We can
interpret this as old-age consumption being financed by a “pay as you go” (PAYGO)
retirement system. Because we assume that all cohorts are of equal size, the government
budget balance requires that

τ︸︷︷︸
Payroll tax revenues

= τ︸︷︷︸
Pensions

which is automatically satisfied.

3Payroll taxes are often proportional to income, i.e., the tax is given by τ · y1. Since the endowment is
exogenous in this example, it makes no difference whether the tax is modelled as lump-sum or a fraction
of y1.
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In equilibrium, we must have c1 = y1 − τ and c2 = τ. The interest rate is therefore
given by

r =
u′(y1 − τ)

βu′(τ)
− 1

where we substituted into the Euler equation and solved for r. ■

By varying τ, the government can directly control household consumption. A natural
follow-up question concerns the welfare-maximising level of payroll taxes which is a
policy variable set by the government and taken as given by households.

Example 5.6 (Optimal payroll tax with PAYGO pension system). Continuing with the
economy from Example 5.5, we now want to determine the optimal level of τ. Assuming
that the government wants to maximise welfare for each cohort, it solves

max
τ∈[0, y1]

u(y1 − τ) + βu(τ)

which gives rise to the Lagrangian

L = u(y1 − τ) + βu(τ) + λ1τ + λ2(y1 − τ)

with Lagrange multipliers λ1 and λ2 for the constraints τ ≥ 0 and τ ≤ y1, respectively.
As before, we know that the government will choose an interior payroll tax 0 < τ < y1
so as to ensure positive consumption of the young and old, so we can ignore these
constraints. The first-order condition is given by

∂L
∂τ

= −u′(y1 − τ) + βu′(τ) = 0

or, assuming CRRA preferences,

− (y1 − τ)−γ + βτ−γ = 0 .

To solve for τ we proceed as follows:

(y1 − τ)−γ = βτ−γ

y1 − τ = β− 1
γ τ

y1 =
[
1 + β− 1

γ

]
τ

=⇒ τ =
y1

1 + β− 1
γ

(5.13)

What can we learn from the expression in (5.13)? First, consider the situation when
β = 1. The optimal payroll tax then simplifies to

τ =
1
2

y1
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A welfare-maximising government therefore taxes away half of the endowment when
young and transfers it to the old in the same period. This is exactly what the utility-
maximising household would do when β = 1.

Next, consider the case of log preferences with γ = 1. The payroll tax is then given by

τ =
1

1 + β−1 y1 =
β

1 + β
y1

and therefore the household consumes

c1 = y1 − τ = y1 −
β

1 + β
y1 =

1
1 + β

y1

while young. This is exactly the optimal consumption level we found in earlier units
with log preferences when lifetime income was given by y1. The conclusion is thus that
the government can impose a policy that replicates the households’ preferred allocation
even in the absence of inter-cohort trade! ■

5.3.3 Pension system with endogenous labour supply

In the previous section, we had a government impose a payroll tax to finance old-age
consumption. However, the (implicit) labour supply was assumed to be exogenous. In a
more realistic setting with endogenous labour supply, we would expect payroll taxes to
have an effect on the household’s willingness to work, which in a production economy
would also affect output.

As before, we impose that the government runs a balanced budget. Assume that τ is
a proportional payroll tax, the wage rate is given by w, the household chooses to supply
1 − ℓ units of labour (and hence chooses to consume ℓ units of leisure), and pensions T
are transferred to the old household. Then the government budget balance requires that

T︸︷︷︸
Pensions

= τw(1 − ℓ)︸ ︷︷ ︸
Payroll taxes

. (5.14)

How can the government use this pension system to transfer resources between cohorts,
and what is the labour supply response of young households? We investigate one such
model in the next example.

Example 5.7 (PAYGO with endogenous labour and log preferences). Consider a
household with log preferences that lives for two periods and endogenously supplies
labour while young:

max
c1, c2, a2

log(c1) + log(ℓ) + β log(c2)

s.t. c1 + a2 = (1 − τ)w(1 − ℓ) (5.15)
c2 = (1 + r)a2 + T (5.16)
ℓ ∈ [0, 1]
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In addition to goods, the household now chooses the amount of leisure ℓ it wants to
consume. Moreover, it pays a proportional payroll tax on labour income w(1 − ℓ) while
young, where w is the wage rate, and receives a lump-sum pension payment T when
old.

The lifetime budget constraint is given by

c1 +
c2

1 + r
= (1 − τ)w(1 − ℓ) +

T
1 + r

(5.17)

and the Lagrangian is

L = log(c1) + log(ℓ) + β log(c2) + λ

[
(1 − τ)w(1 − ℓ) +

T
1 + r

− c1 +
c2

1 + r

]
.

The first-order conditions w.r.t. c1, c2 and ℓ are

∂L
∂c1

=
1
c1

− λ = 0 (5.18)

∂L
∂c2

= β
1
c2

− λ

1 + r
= 0 (5.19)

∂L
∂ℓ

=
1
ℓ
− λ(1 − τ)w = 0 (5.20)

As usual, we obtain the Euler equation by combining (5.18) and (5.19):

1
c1

= β(1 + r)
1
c2

while (5.18) and (5.20) together give the intra-temporal condition that equates the MRS
between c1 and ℓ to the relative price,

1/ℓ
1/c1︸ ︷︷ ︸

MRSc1,ℓ

=
(1 − τ)w

1︸ ︷︷ ︸
Relative price

(5.21)

where the price of the consumption good is normalised to one. We can rewrite the
intra-temporal optimality condition (5.21) as

c1 = ℓ(1 − τ)w . (5.22)

In this example, we assume away government debt, so households won’t be able to save
in equilibrium for the reasons discussed earlier. We can therefore impose a2 = 0 in the
young household’s budget constraint (5.15) and use (5.22) to get an equation in a single
unknown, ℓ:

c1 = (1 − τ)w(1 − ℓ)

ℓ(1 − τ)w = (1 − τ)w(1 − ℓ)

ℓ = (1 − ℓ)
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Solving for ℓ therefore yields

ℓ =
1
2

. (5.23)

Consumption while young is thus given by

c1 = ℓ(1 − τ)w =
1
2
(1 − τ)w

whereas in old age, from (5.16) we have

c2 = T = τ(1 − ℓ)w =
1
2

τw

where the second equality follows from the government budget balance (5.14). To find
the equilibrium interest rate, we insert consumption into the Euler equation and simplify,

1
1
2 (1 − τ)w

= β(1 + r)
1

1
2 τw

1
1 − τ

= β(1 + r)
1
τ

Solving for r yields

r =
1
β

τ

1 − τ
− 1 (5.24)

So far, we ignored that w is also determined in general equilibrium. However, if we
assume a production function of the form f (L) = A · L, then w = A in equilibrium,
and consequently the wage rate is de facto exogenous and given by the productivity
parameter A. Moreover, as you see from (5.23) and (5.24), neither the optimal choice of ℓ
nor the interest rate r depend on the wage rate, irrespective of the production function.

■

Example 5.8 (Optimal payroll tax with endogenous labour supply). In Example
5.7, the policy parameter τ was assumed fixed. Which τ should a welfare-maximising
government set? We again assume that the government takes as given optimal household
choices and solves

max
τ∈[0,1]

log(c∗1) + log(ℓ∗) + β log(c∗2)

where

c∗1 =
1
2
(1 − τ)w (5.25)

c∗2 =
1
2

τw (5.26)

ℓ∗ =
1
2
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which are the solutions found in general equilibrium in Example 5.7. We assume that
the production function takes labour as the only argument and is given by f (L) = A · L
so that w = A is constant equilibrium.

Plugging the optimal household choices into the government’s maximisation problem
yields

max
τ∈[0,1]

log
(

1
2
(1 − τ)w

)
+ β log

(
1
2

)
+ log

(
1
2

τw
)

Getting rid of all the constant terms which have no effect on the optimum, the Lagrangian
can be stated as

L = log(1 − τ) + β log(τ) + λ1 + λ2(1 − τ)

where λ1 and λ2 are the Lagrange multipliers for the constraints τ ≥ 0 and τ ≤ 1. As
before, we ignore these since we know that the optimal τ will satisfy 0 < τ < 1. The
first-order condition for τ is thus

∂L
∂τ

= − 1
1 − τ

+ β
1
τ
= 0 (5.27)

Solving for τ, we find that the socially optimal payroll tax rate is

1
1 − τ

= β
1
τ

1 − τ =
1
β

τ

1 =
1 + β

β
τ

=⇒ τ =
β

1 + β

We can get the implied equilibrium interest rate by substituting for τ in (5.24),

r∗ =
1
β

β
1+β

1 − β
1+β

− 1 =
1
β

β
1+β

1
1+β

− 1 =
1
β

β

1
− 1 = 0

Lastly, we get the welfare-maximising consumption allocation by plugging the expres-
sion for τ into (5.25) and (5.26)

c1 =
1
2
(1 − τ)w =

1
1 + β

1
2

w

c2 =
1
2

τw =
β

1 + β

1
2

w

124



Note that since r = 0 at the optimum, the present value of lifetime income (both from
labour income and pensions) is given by

(1 − τ)(1 − ℓ)w +
T

1 + r
= (1 − τ)(1 − ℓ)w +

τ(1 − ℓ)w
1 + r

= (1 − τ)(1 − ℓ)w + τ(1 − ℓ)w
= (1 − ℓ)w

=
1
2

w

where we have used the government budget constraint (5.14) and the optimal leisure
choice ℓ = 1

2 . Consequently, optimal consumption while young again coincided with
what a household with log preferences would have chosen if it was possible to save.

■

5.4 Social planner solution

You might have noticed that in all three models with a welfare-maximising government,
we arrived at the same equilibrium interest rate, r∗ = 0. Moreover, the consumption
allocation was identical (most easily seen for log preferences), even in the case of endoge-
nous labour supply if we impose that labour productivity is given by A = 2y1. Under
these assumptions, in all three models we found that

c1 =
1

1 + β
y1

c2 =
β

1 + β
y1

in the case of log preferences. This is not a coincidence but arises because the government
can arbitrarily shift consumption between young and old using its policy instrument
(either b or τ), and the welfare-maximising allocation coincides with that of the social
planner in each case, as we demonstrate in the next example.

Example 5.9 (Social planner solution). Assume that the social planner solves

max
c1, c2

log(c1) + β log(c2) (5.28)

s.t. c1 + c2 = y1 (5.29)

This problem is conceptually different from the government’s objective, because the
social planner maximises welfare at a point in time by efficiently distributing the aggregate
endowment y1 between the old and the young. Conversely, the government maximised
the welfare of one single cohort by solving a dynamic problem. However, these problems
coincide if we assume that the social planner attaches a weight of β to old households
whereas the weight of young households is one, as shown in (5.28).
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The social planner’s first-order conditions are

1
c1

= λ

β
1
c2

= λ

which can be combined to eliminate λ:
1
c1

= β
1
c2

(5.30)

Substituting for c2 = βc1 in the aggregate resource constraint (5.29),

c1 + βc1 = y1

we find that the young consume

c1 =
1

1 + β
y1 ,

while consumption of the old is given by

c2 =
β

1 + β
y1 .

This is exactly the consumption allocation we found in all three examples with a welfare-
maximising government. What’s more, if we compare (5.30) with the household’s Euler
equation, we see that these optimality conditions are identical if r∗ = 0 in equilibrium.
To put it differently, with r∗ = 0, the households and the social planner’s optimality
conditions are aligned, and hence the government is able to bring about the first-best
allocation. However, note that this result is specific to the simple models we studied
here and does not necessarily generalise to more complex settings.

■

5.5 Main takeaways

We studied equilibria in OLG economies with two cohorts and concluded that

1. In pure endowment economies without a government, households are unable to
smooth consumption over time because there is no trade in equilibrium.

2. Introducing a government allows us to study equilibria other than autarky.

3. A government can use several instruments to transfer resources across cohorts, for
example by introducing government debt or a redistributive pension system.

4. By setting an optimal debt level or an optimal tax rate, the government achieves
the first-best allocation which coincides with the planner’s solution.

With more than two overlapping cohorts, it is possible to find equilibria with trade
where some cohorts choose to borrow while others lend in order to save for retirement.
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Appendix 5.1: Government debt with CRRA preferences

In this section, we generalise the model with government debt which we solved for log
preferences in section 5.3.1 to the CRRA case with γ ̸= 1. Additionally, we allow for a
non-zero endowment in old age.

Household problem (partial equilibrium). The household now solves

max
c1, c2, a2

c1−γ
1

1 − γ
+ β

c1−γ
2

1 − γ

s.t. c1 + a2 = y1 − τ (5.31)
c2 = (1 + r)a2 + y2 (5.32)

Combining the budget constraints (5.31) and (5.32), the lifetime budget constraint reads

c1 +
c2

1 + r
= y1 − τ +

y2

1 + r
. (5.33)

The Euler equation for the CRRA case is standard,

c−γ
1 = β(1 + r)c−γ

2 (5.34)

which can be solved for c2,
c2 =

[
β(1 + r)

] 1
γ c1 .

Substituting for c2 in the lifetime budget constraint (5.33) gives

c1 +

[
β(1 + r)

] 1
γ c1

1 + r
= y1 − τ +

y2

1 + r
.

Solving for c1, we find that

c1 + β
1
γ (1 + r)

1
γ−1c1 = y1 − τ +

y2

1 + r

c1 =
1

1 + β
1
γ (1 + r)

1−γ
γ

[
y1 − τ +

y2

1 + r

]
(5.35)

General equilibrium. We use the household’s Euler equation to pin down the equilib-
rium interest rate. Using the bond market clearing, a2 = b, and the government budget
balance, rb = τ, we can write consumption while young as

c1 = y1 − τ − a2 = y1 − rb − b = y1 − (1 + r)b .

Substituting for c1 and c2 in (5.34), we have[
y1 − (1 + r)b

]−γ
= β(1 + r)

[
(1 + r)b + y2

]−γ
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We can simplify this expression somewhat to read

y1 − (1 + r)b =
[
β(1 + r)

]− 1
γ

[
(1 + r)b + y2

]
This still leaves us with a non-linear equation in r which can only be solved numerically.
Letting y2 = 0 and γ = 1 as in the main text, we see that the expression simplifies to

y1

b
− (1 + r) =

1
β

=⇒ r =
y1

b
− 1 + β

β

which is exactly what we found in (5.9). Once we have found r numerically, we can
recover the tax from the government budget balance τ = r · b and plug these quantities
into (5.35) to get c1. Old-age consumption c2 follows from the budget constraint (5.32).

To illustrate the difference to the log case, Figure 5.9 plots the allocation of (c1, c2)
against the debt-to-income ratio for an RRA of γ = 2. Recall that with a higher RRA,
the elasticity of intertemporal substitution EIS = 1

γ is lower and hence the household
smooths consumption across periods more than in the log case. This can be seen by
comparing the consumption allocation from Figure 5.9 to Figure 5.5. Finally, Figure 5.10
shows the equilibrium income tax and interest rate for the economy with γ = 2.
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Figure 5.8: Optimal consumption

Figure 5.9: Optimal consumption plotted against the debt-to-income ratio b/y1 for β = 1, γ = 2,
y1 = 1 and y2 = 0.
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Figure 5.10: Tax level and equilibrium interest rate plotted against the debt-to-income ratio b/y1
for β = 1, y1 = 1 and y2 = 0.
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