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1 Introduction

How do households split their financial wealth among different types of assets? From
US data on portfolio allocations, it has long been known that wealthier households are
more likely to participate in the stock market (Poterba and Samwick (1995), Haliassos
and Bertaut (1995)), while the fraction invested in risky assets conditional on partici-
pation is almost flat across the wealth distribution. A similarly clear pattern emerges
when examining portfolios over the life-cycle: participation is humped-shaped in age,
with younger households being the least likely to invest in stocks despite their longer
investment horizon. Recent evidence from Swedish and Norwegian administrative data
(Bach, Calvet, and Sodini (2018), Fagereng et al. (2019)) confirms these patterns to be
present in other countries and additionally documents vast return heterogeneity across
the wealth distribution, which to a large extent stems from differences in exposure to
risky assets.1

Standard models of portfolio choice, on the other hand, have largely been unsuccessful in
replicating these empirical observations, in particular the limited participation (Campbell
(2006), Guiso and Sodini (2013)). Early life-cycle models such as Cocco, Gomes, and
Maenhout (2005) and Gomes and Michaelides (2005) more or less obtain the results
established in Merton (1971), albeit in a more quantitative framework. These imply
that young households, whose wealth primarily consists of non-tradable human capital
(future earnings), choose to invest most if not all of their freely disposable financial
wealth in risky stocks, while older households diversify their investment towards risk-
free bonds. Since young households are, on average, poor in terms of financial wealth,
this mechanism creates a risky share that is decreasing in wealth in the cross-section,
contrary to what we observe in the data.

More recent attempts to reconcile household-finance models with empirical findings
mostly work along two dimensions: the first approach abandons the almost ubiquitous
assumption of a constant relative risk aversion and instead incorporates non-homothetic
utility, as in Wachter and Yogo (2010).2 A second strand of literature imposes particular
assumptions on stochastic labor income to tilt the portfolio allocation of young or
poor households away from the risky asset; papers in this group include Catherine
(2019) and Chang, Hong, and Karabarbounis (2018). However, their mechanisms have

1Hubmer, Krusell, and Smith (2019) and Benhabib, Bisin, and Luo (2019), in turn, establish the central role
of differences in portfolio returns as a major determinant of wealth inequality in quantitative models.

2Gomes and Michaelides (2003) introduce additive habits into a life-cycle model which can also generate a
decreasing relative risk-aversion, but they find no improvement over a standard CRRA framework.
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no effect on retired households and do not alter the extensive-margin participation
decision.

In this paper, I explore an alternative explanation for the portfolio composition patterns
observed in the data: based on evidence in Malmendier and Nagel (2011, 2016), the
model presented here departs from rational expectations and instead lets households
form beliefs about stock returns based on their history of previous realizations. Further-
more, in line with the data, I assume that households hold underdiversified portfolios,
which results in idiosyncratic return histories. These two additions to an otherwise
standard household-finance model give rise to positive sorting across beliefs and a
household’s position in the wealth distribution: rich households, to the extent that they
are rich because of high returns in the past, are more optimistic and choose to invest a
higher share in stocks than if they had known the true data-generating process. Poorer
households who experienced low returns believe that risky returns will continue to be
low, and hence shift their portfolios towards risk-free bonds, or exit the stock market
altogether.

The findings from Malmendier and Nagel (2011, 2016) have recently been incorporated
into models to investigate their implications for asset prices, trading volumes and return
predictability (see Schraeder (2015), Nakov and Nuño (2015), Collin-Dufresne, Johannes,
and Lochstoer (2016a, 2016b), Ehling, Graniero, and Heyerdahl-Larsen (2017), Mal-
mendier, Pouzo, and Vanasco (2018), Nagel and Xu (2019)), and persistent investment
slumps following severe recessions (Kozlowski, Veldkamp, and Venkateswaran 2015).
These papers mainly either feature representative agents or representative cohorts in
infinite-horizon settings and thus, they cannot speak to how the portfolio composition
varies across the wealth distribution and over the life-cycle.

Conversely, I embed subjective belief heterogeneity into an incomplete-markets life-cycle
model in which households face idiosyncratic earnings shocks. Additionally, returns
on the risky asset are allowed to be imperfectly correlated within cohorts. Households
know the true variance of risky returns but form beliefs about the mean excess return
which they update following a rule similar to the one estimated in Malmendier and
Nagel (2011, 2016).

I find that this mechanism can claim a partial success in reconciling portfolio choices with
those observed in the data: compared to the standard model, the positive correlation
between beliefs and a household’s position in the wealth distribution induces limited
participation even among middle-class households, something that cannot be achieved
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with participation costs of a reasonable magnitude. Subjective beliefs are thus able to
close approximately half the gap between the participation rates observed in U.S. data
and the predictions generated by a standard model. On the other hand, conditional on
participation, the risky share in the cross-section mostly remains unchanged. While an
individual household’s optimal risky share responds to changes in beliefs in an intuitive
way, these effects average out in the aggregate.

Unlike Chang, Hong, and Karabarbounis (2018) and Catherine (2019), which rely on
certain properties of the stochastic earnings process to make the risky asset less desirable,
the mechanism employed here continues to work for households once they retire. Fur-
thermore, the model generates limited participation even when no participation costs
are imposed. This is in contrast to the above papers and most other models where house-
holds face a positive expected excess return; in such a setting, absent any participation
costs, agents choose to invest a (potentially small) positive fraction of their savings in
the risky asset, irrespective of their risk aversion.

As a robustness test, I discuss an alternative model specification in which households
update beliefs using Bayes’ rule instead of the mechanism suggested in Malmendier
and Nagel (2011, 2016). In this scenario, agents are perfectly rational (since Bayesian
updating is the optimal strategy for updating beliefs as new information arrives), but
suffer from limited information since they do not incorporate return realizations prior
to their birth when forming beliefs. I show that the results are almost identical, even
though in the Bayesian case, household expectations converge to the true excess return
more quickly, thus muting the effect of subjective beliefs.

The remainder of the paper is organized as follows: In section 2, I discuss related
papers in the literature. In section 3, I review the stylized facts on households’ portfolio
composition observed in U.S. data. Then, section 4 introduces a simple three-period
model to illustrate the mechanism, while section 5 expands it to a quantitative life-cycle
framework. I discuss the calibration in section 6 and present results for the benchmark
model in section 7. Section 8 shows that these largely remain unchanged if agents use
Bayes’ rule to update beliefs, and section 9 demonstrates that the findings are robust
to assuming more realistic levels of underdiversification. Section 10 concludes the
paper.
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2 Related literature

This paper relates to several strands of literature: first, to papers in household fi-
nance trying to explain limited stock market participation or the fraction of financial
wealth invested in risky assets; second, to papers studying investors’ financial deci-
sions without imposing rational expectations; and third, to papers quantifying the
importance of portfolio choice for wealth inequality. Additionally, it builds on a vast
and rapidly growing empirical literature on beliefs and their implications for portfolio
choice.

Household finance. Among the early seminal papers in the first group are Cocco,
Gomes, and Maenhout (2005) and Gomes and Michaelides (2005).3 As the former
do not have any participation costs, in their paper household portfolio allocations do
more or less reflect the results in Merton (1971): young (or poor) households invest all
their financial wealth into stocks and rebalance their portfolio towards safe bonds as
they age (or become more wealthy). Participation is universal for all households that
choose to save a positive amount. Gomes and Michaelides (2005) extend this framework,
incorporating preference heterogeneity and a fixed cost of entering the stock market.
In their model, more risk-averse agents with higher precautionary savings are more
likely hold stocks as they are those willing to pay the participation cost. Other papers
introduce additional mechanisms to better match participation over the life-cycle: for
example, Fagereng, Gottlieb, and Guiso (2017) include stock-market disaster risk, which
combined with a per-period participation cost prompts older households to liquidate
their stock holdings at more realistic rates.

A second group of papers proposes mechanisms that attempt to reconcile the model-
generated conditional risky share with data. Catherine (2019) incorporates the earning
process introduced in Guvenen, Ozkan, and Song (2014) and Guvenen et al. (2016) that
exhibits cyclical skewness, i.e. the likelihood of large drops in earnings when risky
returns are low, to match the portfolio composition over the life-cycle.4 Households who
are thus particularly exposed to this kind of earnings risk are more reluctant to hold

3In this discussion, I exclusively focus on papers with two liquid assets, a risk-free bond and a risky stock.
The role of housing in households’ portfolio decisions is investigated by, among others, Cocco (2004),
Yao and Zhang (2004), and Vestman (2018) in a Swedish context. See Campanale, Fugazza, and Gomes
(2015) for a model where the risky asset is illiquid.

4This is an application of an idea going back to Mankiw (1986), used in Krusell and Smith (1997) and
Storesletten, Telmer, and Yaron (2007), among others, to generate higher risk premia.
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a large fraction in risky assets.5 On the other hand, Chang, Hong, and Karabarbounis
(2018) use age-dependent unemployment risk with zero replacement rates and uncer-
tainty about future earnings growth to achieve the same goal. However, once retired,
households in these models revert to the same counterfactual investment choices as in
the standard model, and neither mechanism affects participation.

Asset pricing and learning from experience. Another set of related papers investi-
gates the implications of belief formation estimated in Malmendier and Nagel (2011,
2016) in an asset-pricing context. Schraeder (2015) and Malmendier, Pouzo, and Vanasco
(2018) build representative-cohort models featuring CARA preferences to characterize
price dynamics and household choices in the presence of non-Bayesian learning in an
analytically tractable way. Collin-Dufresne, Johannes, and Lochstoer (2016b, 2016a) use
a Bayesian-learning framework in which a representative agent (or two representative
dynasties) are uncertain about the mean of stochastic consumption growth. In Collin-
Dufresne, Johannes, and Lochstoer (2016a), the variance of the prior is reset whenever a
new generation enters, thus mimicking the “learning from experience” mechanism iden-
tified in Malmendier and Nagel (2011, 2016). Collin-Dufresne, Johannes, and Lochstoer
(2016a) find that this form of belief updating has a substantial effect on the the risk
premium in their model. Ehling, Graniero, and Heyerdahl-Larsen (2017) introduce
“learning from experience” into a Blanchard (1985)-type perpetual-youth model in which
young households react more strongly to positive return shocks, thus decreasing the risk
premium. Finally, in a business-cycle context, Kozlowski, Veldkamp, and Venkateswaran
(2015) introduce belief updating into a representative-agent economy to generate long-
lasting effects of severe recessions. In their paper, agents form beliefs about capital
returns in a non-parametric fashion; new (extreme) observations can thus skew the
estimated kernel density which agents use to forecast future returns for a prolonged
period of time.

Portfolio choice and wealth inequality. A strand of literature that is not directly re-
lated to portfolio choice, but establishes its importance for wealth inequality, includes
papers such as Hubmer, Krusell, and Smith (2019) and Benhabib, Bisin, and Luo (2019).
Neither of these contains an explicit portfolio choice, but Hubmer, Krusell, and Smith
(2019) incorporate exogenous heterogeneous returns into their model and find that

5One implication is that earnings-rich households have the lowest risky share as the earnings risk enters
multiplicatively in that model.
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these are a major driver of wealth inequality, in particular affecting the right tail of the
wealth distribution. They calibrate a wealth-level-dependent return process to moments
reported in Bach, Calvet, and Sodini (2018). However, it is important to stress that the
increase in portfolio returns along the wealth gradient is primarily a result of household
choices, and return heterogeneity conditional on asset class is only of secondary impor-
tance. To illustrate this, Bach, Calvet, and Sodini (2018) report that the lowest decile of
the wealth distribution earns an annual excess return of 0.61% on their total financial
wealth, whereas the corresponding value is above 4% for the wealthiest households.
However, the return difference on risky financial assets is substantially smaller, since
the corresponding excess returns are 5.9% for the lowest decile and around 7.7% for
the richest households. Thus, the share of risky financial assets, which rises from 10%
for the poorest to almost 60%, is the main driver of return heterogeneity, and high-
lights the importance of understanding the determinants of household portfolio choices.
Kuhn, Schularick, and Steins (2019) provide empirical evidence for the importance of
portfolio composition for aggregate wealth dynamics: Using decades of data from the
SCF, they show that increases in house prices reduce wealth inequality as this mostly
benefits the middle class who hold leveraged positions in housing. On the other hand,
gains in the stock market have the opposite effect, i.e. increasing the wealth share held
by the richest since middle-class households participate in stock markets to a lesser
extent.

Empirical literature on beliefs and portfolio choice. There is a vast empirical litera-
ture on beliefs about asset returns and how these relate to household portfolios. One
general conclusion is that beliefs in the population are very heterogeneous and belief
updating can be classified into a few distinct types that show either extrapolative or
mean-reverting behavior, or evolve as if returns were a random walk (Gaudecker and
Wogrolly (2019), Heiss et al. (2019), Dominitz and Manski (2011)).6 At an aggregate
level, Greenwood and Shleifer (2014) examine the average expected returns from six
different surveys and find them to be highly correlated with past returns, interpreting
this as evidence for extrapolative beliefs. Similarly, Vissing-Jorgensen (2003) reports that
investors are more optimistic about the stock market after high returns on their own
portfolios; moreover, she documents heterogeneity in beliefs depending on investors’
years of experience. Numerous papers find a positive relationship between higher
expected returns and the probability of participating in the stock market (Arrondel,

6Giglio et al. (2019) argue that beliefs are very persistent and most of the dispersion is due to between-
person variation that cannot be explained by observables.
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Hector, and Tas (2014), Kézdi and Willis (2011), Hurd and Rohwedder (2012), Dominitz
and Manski (2007)), even though the magnitudes are usually small. Similar findings
have been established for the conditional risky share: while there is a statistically ro-
bust relationship, the effect of higher expected returns on risky shares is an order of
magnitude lower than predictions from standard models (Giglio et al. (2019), Kézdi
and Willis (2011), Ameriks et al. (2019)). Another group of papers does not directly
observe beliefs, but relates return histories to individuals’ investment decisions and
finds evidence for reinforcement learning: Choi et al. (2009) report that higher past
performance on retirement accounts is associated with increases in retirement savings,
while Meyer and Pagel (2019) establish that the probability of reinvesting funds after
quasi-random mutual fund closures is higher for investors who experienced gains. Kaus-
tia and Knüpfer (2008) provide evidence that the likelihood of participating in IPOs
decreases for investors who previously experienced poor performance. Malmendier and
Nagel (2011) find that individuals who lived through times of high returns are more
likely to participate in the stock market and invest a higher share in stocks. Lastly, Briggs
et al. (2019) provide quasi-experimental evidence for the effect of wealth on stock market
participation using data on Swedish lottery winners. They document that standard
models with participation costs predict responses in the participation rate which are
three to four times larger than those found in the data. On the other hand, they find
that subjective beliefs elicited in a supplementary survey can account for about half of
this gap. Additionally, splitting their sample into individuals who experienced high vs.
low stock market returns prior to winning the lottery, they show that the participation
responses are significantly larger within the first group.

3 Household portfolios in U.S. data

In this section, I document portfolio allocations in the Survey of Consumer Finances (SCF)
using the 1998, 2001, 2004 and 2007 waves. I restrict the sample to include individuals
aged 20 to 79. The analysis follows the one in Chang, Hong, and Karabarbounis (2018),
but I additionally report portfolio composition across the wealth distribution, while they
focus on the life-cycle. The variable definitions of aggregate asset categories (safe and
risky financial assets) are identical to their definitions (see their appendix for a more
detailed description of the SCF and the variables used).

I exclusively focus on how households invest their financial wealth, which does not
include housing or actively managed businesses, but does include the value of busi-
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nesses owned but not actively managed by households. For completeness, Table 5 and
Table 6 in the appendix report detailed summary statistics for important components of
households’ balance sheets which also include asset and debt positions that are not part
of financial wealth.

I will mostly be concerned with two statistics characterizing household portfolios across
the wealth distribution and over the life-cycle:

1. The participation rate in risky assets, i.e. the fraction of households who hold any
risky assets.

2. The conditional risky share, i.e. the amount of financial wealth invested in risky
assets as a fraction of total financial wealth, conditional on a non-zero amount held
in risky assets.

In the following graphs, I distinguish between the “gross share,” which is defined
as the risky share obtained when using gross safe assets, and the “net share” which
controls for consumer debt. Using S and R to denote gross safe and risky financial assets,
respectively, the gross risky share is defined as

ξgross =
R

R + S

while the net risky share is

ξnet =
R

R + S− B

where B is the sum of credit card and consumer loans. The difference S− B is thus a
measure of net safe assets.

Figure 1 plots the portfolio composition along gross total wealth, which is the wealth
measure I use when matching model moments to data. Two stylized facts emerge: the
participation rate is almost monotonically increasing from zero to close to 100% along the
wealth distribution, while the conditional risky share is more-or-less flat, except for the
first wealth decile. The graphs show that for the most part, the gross and net risky shares
are quite close, which is due to the fact that consumer debt is not very high on average.
In the appendix in section A.2, I show that these plots are quite similar when using other
wealth measures such as gross financial wealth or net worth.

In Figure 2, I report the evolution of the portfolio composition over the life-cycle, aver-
aged over 5-year bins (ages 20–24, . . . , 75–79). The participation rate exhibits a hump-
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Figure 1: Portfolio composition along percentiles of gross total wealth. Each dot represents two
percent of households. Data source: SCF 1998–2007.

shaped pattern: only 30% of young households invest in risky assets, whereas this value
peaks at around 65% for ages close to retirement. After that, participation slopes down
to approximately 40% for those aged 80.

On the other hand, the conditional risky share, shown in the right-hand panel of Figure 2,
is almost flat across age. Similar to the previous graphs, it makes little difference whether
the gross or net risky share is used.

The evidence presented above ignores that fact that the most important asset on many
household’s balance sheet is residential real estate (the homeownership rate is approx-
imately 69.4% in this SCF sample). Since there is no housing in the model presented
below, one potential concern is that financial wealth allocations differ systematically
between home owners and renters because housing affects the investment decision of
non-housing financial assets.

Figure 3 suggests that this is not the case: conditioning on wealth (in this case deciles of
gross total wealth), homeowners and renters allocate their financial wealth similarly.7

By construction, conditional on total gross wealth, the balance-sheet composition of
homeowners and renters will look very different, so I present plots using alternative
definitions of wealth in the appendix, section A.3. The findings remain unchanged for
these wealth measures.

7All figures plotting portfolio choices disaggregated by home ownership show the gross risky share.
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Figure 2: Portfolio composition over the life-cycle, 5-year averages. Data source: SCF 1998–2007.
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Figure 3: Portfolio composition along percentiles of gross total wealth by homeownership status.
Wealth percentiles are computed for the pooled sample of owners and renters. Plots
show averages conditional on wealth percentile and homeownership status. Data
source: SCF 1998–2007.

11



25 35 45 55 65 75
Age

0
25

50
75

10
0

Pe
rc

en
t

Participation rate

25 35 45 55 65 75
Age

Owners
Renters

Conditional risky share

Figure 4: Portfolio composition over the life-cycle by homeownership status, 5-year averages.
Data source: SCF 1998–2007.

The picture changes somewhat over the life-cycle, as shown in Figure 4. While the
conditional risky share is almost identical for owners and renters, participation varies
markedly between the two sub-populations. The reason is that renters are substantially
poorer on average, which is not evident from Figure 3 since those moments condition
on wealth. For example, in this SCF sample the median gross wealth among owners is
$258,000 vs. $2,100 for renters, while the corresponding figures for net worth are $174,000
vs. $567, and $55,000 vs. $1,930 for gross financial wealth.

In Figure 5, I plot how the homeownership rate varies with wealth for several wealth
aggregates, which illustrates a stark increase in homeownership along the wealth dis-
tribution, as expected. For example, while there are zero owners in the first decile
of total gross wealth (left-hand panel), this fraction increases to almost 100% for the
wealthiest. The picture is similar for various definitions of financial wealth (right-hand
panel), where the homeownership rate is monotonically increasing in wealth except for
the first decile.

To summarize the portfolio composition of homeowners vs. renters, the financial port-
folios of these groups do not differ to any great extent conditional on wealth, and
are particularly close when conditioning on financial wealth levels. Over the life-
cycle, the conditional risky share is similar for both groups, while participation is
uniformly shifted downwards for renters. This is driven by substantially lower wealth
levels among renters and the fact that participation increases in wealth, as documented
above.
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Figure 5: Share of homeowners along wealth percentiles. Left panel: total gross wealth and net
worth. Right panel: Gross and net financial wealth. Data source: SCF 1998–2007.

In conclusion, the stylized facts highlighted in this section are as follows: partici-
pation substantially increases along the wealth distribution, from basically zero to
100%, while it is hump-shaped over the life-cycle, peaking around retirement. The
share of financial wealth invested in risky assets, conditional on holding a positive
amount of such assets, is mostly flat both along the wealth distribution and over the
life-cycle.

In the remainder of the paper, I explore to what extent these patterns can be accounted
for in a model with experience-based learning that gives rise to subjective beliefs about
risky returns.

4 Simple three-period model

Before introducing the full quantitative model, I begin the exposition with a simplified
three-period model which is nevertheless rich enough to illustrate the main mechanism.
The terminal period is only needed so that households face a non-trivial decision problem
in the second period, as opposed to simply consuming all resources, and can otherwise
be ignored.

In the first period (t = 1), I assume that households indexed by i are ex ante identical.
They decide on consumption c, total savings b and the share invested in the risky asset,
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denoted by ξ. Their problem can be written as

V1 (a1) = max
c1, b1, ξ1

{
u(c1) + βEV2 (a2, µ̂i2)

}
s.t. a1 = c1 + b1, c1 ≥ 0, b1 ≥ 0

a2 =
(
ξ1Ri2 + (1− ξ1)R f

)
b1, ξ1 ∈ [0, 1]

where a1 are beginning-of-period assets and u(•) is the standard power utility function
with relative risk-aversion γ. Households can choose to invest either in a risk-free bond
with gross return R f , or in a risky asset with excess return

Rit+1 − R f = µ + zit+1 , zit+1
iid∼ N

(
0, σ2) (1)

Risky return realizations are i.i.d. in the cross-section and across time and thus, each
household has a potentially different return realization Rit+1. Households are un-
certain about the true value µ and instead have household- and time-specific be-
liefs, denoted by µ̂it. However, the variance of risky returns σ2 is known with cer-
tainty.

As households start out ex-ante identical with the same wealth level a1 and the correct
belief µ̂i1 = µ, they choose the same portfolio allocation. Absent any labor income,
the optimal choice is sufficiently well approximated by the standard formula ξ1 ≈
µ/(γσ2).8

At the beginning of period two, after observing their risky return realizations Ri2,
households update their beliefs according to

µ̂i2 = (1− α)µ̂i1 + α
(

Ri2 − R f
)

(2)

where α is the weight put on the most recent return realization. I postpone the discussion
on the exact way in which α is determined until later; for now it suffices to say that
various updating strategies (experience-based learning as in Malmendier and Nagel
(2011, 2016), Bayesian learning from experience, constant-gain learning) can be mapped
into a corresponding value for α.

Equation (2) implies that starting in period two, there will be a dispersion of beliefs
in the cross-section that closely mimics the risky return distribution. The optimization

8The chosen preference and return parameters ensure that the optimal risky share in the first period is
interior, i.e. µ/(γσ2) ∈ (0, 1).
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problem in the second period thus has an additional state variable µ̂i2 and can be stated
as

V2 (a2, µ̂i2) = max
c2, b2, ξ2

{
u(c2) + βEiu(c3)

}
s.t. a2 = c2 + b2, c2 ≥ 0, b2 ≥ 0

c3 =
(
ξ2Ri3 + (1− ξ2)R f

)
b2, ξ2 ∈ [0, 1]

The problem is the same as in the first period, except that now households form sub-
jective expectations about returns in t = 3, and will therefore choose different risky
shares

ξi2 ≈


0 if µ̂i2 ≤ 0

µ̂i2/(γσ2) if 0 < µ̂i2 < γσ2

1 else

Since there is no other heterogeneity, idiosyncratic return realizations do not only deter-
mine the beliefs in period two, but also a household’s position in the wealth distribution.
By construction, the wealthiest also end up being most overoptimistic about future
returns, and consequently choose a higher risky share than in the fully rational model.
This outcome is illustrated in Figure 6. By contrast, the optimal risky share with rational
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Figure 6: Risky shares across the belief and wealth distribution in the second period

expectations is illustrated by the dashed line, and is constant across the wealth distribu-
tion (in fact, it is the same as in the first period since the objective risky return distribution
remains unchanged). Thus subjective belief heterogeneity creates an upward-sloping
risky share in the cross-section and non-participation for low-wealth households. Since
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short-selling is not permitted, the poorest households (who at the same time are the
most pessimistic about risky returns) choose not to hold any stocks, thus generating
limited participation in the cross-section.

Naturally, this stylized setting vastly exaggerates the correlation between beliefs, wealth
and portfolio choice. In reality, many factors other than asset returns affect a household’s
position in the wealth distribution, the most important being (uncertain) earnings and
the life-cycle, which creates a hump-shaped age profile of asset holdings. To explore
whether the mechanism outlined above carries over to a more quantitative framework
which takes these aspects into account, I proceed to embed subjective beliefs into an
otherwise standard life-cycle model.

5 Quantitative life-cycle model

Consider a discrete-time, partial-equilibrium life-cycle model along the lines of Cocco,
Gomes, and Maenhout (2005), Gomes and Michaelides (2005) and many others in the
household finance literature. I modify this framework along two dimensions, both of
which are supported by empirical evidence: first, I impose that households form subjec-
tive beliefs about the risky asset’s average return, and these beliefs are determined by
each household’s history of experienced risky returns. Second, I assume that households
hold underdiversified portfolios with an idiosyncratic component, and they therefore
differ in their return histories.

Besides their beliefs and return histories, households are heterogeneous in their wealth
holdings, earnings capacity and age. They live up to a maximum of 89 years and
face an age-dependent probability of death. Households supply labor inelastically,
retire at an exogenously fixed age and receive a deterministic retirement income there-
after.

Markets are incomplete, so households cannot insure against earnings or survival risk. I
additionally impose that households cannot borrow in either asset.

5.1 Subjective beliefs

Since subjective beliefs are the main non-standard building block of the model and work
the same for both working-age and retired agents, I discuss these first.
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As in the three-period example, households allocate their portfolio across a risk-free and
a risky asset. Risky returns are assumed to be i.i.d. over time, and in the benchmark
case I additionally impose that they are i.i.d. in the cross-section. While in the data
individual returns on financial wealth are, of course, not independent of other investors’
return realizations, Calvet, Campbell, and Sodini (2007) report that in Swedish register
data, the idiosyncratic share of the variance of individual portfolio returns due to
underdiversification is approximately 60%. Hence, there is something to be learned even
from the i.i.d. assumption adopted in the benchmark case. I relax this assumption in
section 9.

A household at age h chooses to invest in the risk-free asset with gross return R f and a
risky asset with excess return

re
ih+1 ≡ Rih+1 − R f = µ + zih+1 , zit+1

iid∼ N
(
0, σ2) (3)

where the variance of risky returns σ2 is constant and known.9 After a return realization
Rih has been observed, agents update their beliefs according to

µ̂ih = (1− αh)µ̂ih−1 + αh
(

Rih − R f
)

(4)

where µ̂ih−1 was the prevailing belief in the last period. The choice of learning mechanism
determines how the weight αh on the most recent observation is determined. I discuss
three potential alternatives in turn.

Constant-gain learning. In this setting, αh = α is a time- and age-invariant parameter.
This method is used by Nagel and Xu (2019) in a modified Bayesian framework in an
infinite-horizon model. The findings in Malmendier and Nagel (2011, 2016), however,
suggest that new information is assigned different weights depending on an individual’s
age, and are thus incompatible with a constant α.

Bayesian learning from experience (BLE). Bayes’ rule is the optimal algorithm to
update beliefs when new information arrives and hence, this approach is closer to

9For the remainder of the paper, I adopt the convention to subscript objects that only depend on age by
h instead of t which is used to denote calendar time. In the benchmark model with i.i.d. returns in
the cross-section and no time-varying aggregates, the household problem can be fully characterized
in terms of household age h. Calendar time t will only play a role in section 9 when aggregate market
returns are introduced into the model.
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rational expectations.10 However, agents only use information from their own experience
to update their beliefs, thus discarding events prior to their birth. With a sufficiently long
sequence of returns, agents’ beliefs would converge to the true average excess return µ

and any subjective belief heterogeneity would consequently disappear in the long run.
However, in a life-cycle setting, it is reasonable to assume that newborns do not factor in
information that predates their own lifetime and instead impose Bayesian learning from
experience.

Experience-based learning (EBL). A third belief formation method, proposed and
estimated in Malmendier and Nagel (2011, 2016) and applied in an asset pricing context
in Malmendier, Pouzo, and Vanasco (2018), postulates that the update weight is a
function of age only.11 Malmendier and Nagel (2011) show that an index of past returns,
computed as

Rit(λ) =
ageit−1

∑
k=1

w (ageit, k; λ) Rt−k (5)

(using their notation), with the weighting function given by

w(ageit, k; λ) =
(ageit − k)λ

∑
ageit−1
j=1 (ageit − j)λ

(6)

is related to households’ risk attitudes, stock market participation and the share invested
in stocks conditional on participation. The functional form is sufficiently flexible to allow
for past observations to receive more or less weight as one moves back in time, and col-
lapses to the conventional estimate of the sample mean for λ = 0.

In the appendix, section B, I show how the weighting scheme in (5) and (6) can be
transformed into a recursive formulation and stated in terms of the belief updating
equation (4). Adapted to the notation used in my model, the update weight is given
by

αh =
(h + h− 1)λ

∑h+h−1
k=1 (h + h− k)λ

(7)

10I adopt the terminology used in Malmendier, Pouzo, and Vanasco (2018) who label the belief updating
methods discussed here as “Bayesian learning from experience” and “experience-based learning.”

11I combine the updating methods in Malmendier and Nagel (2011) and Malmendier and Nagel (2016) even
though they use different functional forms. The latter paper assumes that people update their beliefs
using a decreasing-gain learning algorithm where the gain is a function of age and birth year. However,
as the authors show in the appendix to Malmendier and Nagel (2016), there is a direct mapping between
the gain estimated in Malmendier and Nagel (2016) and the shape parameter λ of the weighting scheme
in Malmendier and Nagel (2011), here restated in (5) and (6).
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where h is the actual age corresponding to model age h = 0, i.e. age = h+ h.

Figure 7 shows the weights assigned to lagged observations implied by each of the
three belief updating methods. The parameters are calibrated such that individuals
at the age of 30 update their beliefs by approximately 2.5% (at a quarterly frequency)
in all three cases. This is line with the estimates of λ in Malmendier and Nagel (2011)
which at age 30 imply an update weight of about 10% at an annual frequency. The
three mechanisms have starkly different implications for how past information is used
(or discarded) to form beliefs: with constant-gain learning, lagged observations are
weighted in a geometrically decreasing fashion, while with Bayesian learning from
experience, all observations receive the same weight (since the returns are i.i.d.), even
though this weight decreases as an individual collects longer time series of data. Lastly,
the estimates in Malmendier and Nagel (2011, 2016) suggest that people aged 30 put a
higher weight on the most recent observation (approximately 2.5%), while by the age
of 70 this value drops to 1%. The effect of new information is thus muted for older
individuals.

In this paper, I choose experience-based learning as the benchmark case for two reasons:
first, Malmendier and Nagel (2011, 2016) provide evidence that historical observations
weighted in this way have a significant impact on how people form beliefs and make
financial decisions. Second, EBL with λ = 0 can replicate the same weights as BLE (for
some initial prior), but λ = 0 is rejected by the findings in Malmendier and Nagel (2011,
2016).

In the next section, I describe how subjective beliefs are incorporated into the household’s
optimization problem.

5.2 Retired households

Households exogenously retire at age Hr and continue to live up to a maximum age H,
facing a stochastic survival risk along the way. Once retired, they receive retirement ben-
efits that are proportional to their last pre-retirement labor income, which is summarized
by the state p and remains unchanged through the retirement.

A retired household’s state is represented by the tuple x = (h, a, p, µ̂i, j), where h denotes
age, a is beginning-of-period cash-at-hand (i.e. any assets plus retirement benefits), µ̂i

is the current belief about excess returns and j indexes a (fixed) preference type. The
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Figure 7: Weights assigned to past observations for constant-gain learning, Bayesian learning
from experience and experience-based learning.
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household optimally chooses consumption c, total savings b and the share invested in
the risky asset ξ in order to maximize

Vr
jh (a, p, µ̂i) = max

c, b, ξ

c1−ψ + β j

[
πs

hEi

[ (
Vr

jh+1

)1−γ
]
+ (1− πs

h)Ei

[ (
Vb

j

)1−γ
]] 1−ψ

1−γ


1

1−ψ

with continuation values

Vr
jh+1 ≡ Vr

jh+1
(
a′, p, µ̂′i

)
Vb

j ≡ Vb
j
(
a′b
)

subject to the budget constraint

a = c + b + κ · 1{ξ>0} (8)

and the usual non-negativity constraints c ≥ 0, b ≥ 0. Moreover, households are not
allowed to take short positions in either asset, restricting the risky share to ξ ∈ [0, 1]. I
assume that the preferences are of the Epstein-Zin-Weil form (Epstein (1988) and Epstein
and Zin (1989), Weil (1990)) such that the EIS ψ−1 is not restricted to be the inverse of
the relative risk aversion γ. Decoupling the EIS from the risk aversion is helpful when
trying to match the wealth distribution (and hence savings).

To this end, households are also permitted to be heterogeneous in terms of preferences.
These differences are assumed to be randomly drawn at birth and remain unchanged
throughout their lifetime. A household’s preference type, indexed by j, then determines
its discount factor β j and the bequest utility weight φj, which is discussed below. I
assume that there are two types, with type 1 being the impatient household which also
has a lower bequest motive.

In the benchmark calibration, I impose a fixed per-period participation cost κ when
households choose to invest a positive amount in the risky asset, but additionally report
results for κ = 0.

Given optimal choices and next-periods shock realizations, the ex-post return on a
household’s portfolio is

R′p = ξ(R′i − R f ) + R f
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and hence next-period cash-at-hand is

a′ = R′pb + ρss p

with ρss being the replacement rate relative to the earnings level p just prior to retire-
ment.

Households survive with an age-dependent survival probability πs
h with πs

H = 0 in the
terminal period. Upon death, they derive utility from “warm-glow” bequests as in De
Nardi (2004), summarized by the function12

Vb
j (ab) = φ

1/(1−ψ)
j ab (9)

The parameter φj scales the utility derived from bequests relative to current-period
consumption and the continuation value conditional on survival. While it is common in
the macroeconomic literature to include a non-homothetic luxury-good component in
the bequest motive such that it predominantly affects wealthy households, this induces
a relative risk aversion that is increasing in wealth, which is undesirable in a context
studying portfolio choice.

Subjective beliefs enter the household’s problem via the state variable µ̂i, which I sub-
script by i to make explicit the link between household i’s beliefs about mean excess
returns and its subjective expectations, denoted by Ei [ . . . ]. In the benchmark model, I
assume that households are naive with respect to any future belief updating, i.e. they
do not anticipate that they will revise their beliefs about risky returns as they observe
realizations in the future. Therefore, their perceived law-of-motion for µ̂ih is µ̂ih+1 = µ̂ih.
Alternatively, households could be sophisticated and factor in that for a given realization
of R′i tomorrow, they will update their beliefs according to (4) with the weight on the
last observations given by (7). This difference arises only in terms of how expectations
are formed; when simulating households, their beliefs are always updated according to
(4). I report results for an economy with sophisticated households in the appendix, since
for the benchmark model, the differences are modest.

12This simple linear function can be obtained from a more general functional form for the case of EZW
preferences suggested in Bommier, Harenberg, and Le Grand (2017) by setting all their additive terms
to zero (in particular the bequest shifter). With power utility, when γ = ψ, the bequest utility implied by
(9) is the familiar vb

j (ab) = φja
1−γ
b /(1− γ).
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5.3 Working-age households

Working-age households are assumed to supply labor inelastically and therefore, their
optimization problem is almost identical to the one discussed above. An agent with a
state vector given by x = (h, a, p, µ̂i, j) for 0 ≤ h < Hr solves

Vjh (a, p, µ̂i) = max
c, b, ξ

c1−ψ + β

[
πs

hEi

[ (
Vjh+1

)1−γ
]
+ (1− πs

h)Ei

[ (
Vb

j

)1−γ
]] 1−ψ

1−γ


1

1−ψ

with continuation values

Vjh+1 ≡

Vjh+1 (a′, p′, µ̂′i) if h < (Hr − 1)

Vr
jh+1 (a′, p, µ̂′i) else

and
Vb

j ≡ Vb
j
(
a′b
)

The constraints are identical to those of the retired household. However, conditional on
survival, next-period cash-at-hand is now given by

a′ = R′pb + y′

where y′ are stochastic earnings. I adopt the standard convention of modeling these
as

log yih+1 = log ωh+1 + log pih+1 + log εih+1 (10)

where ωh is a hump-shaped, deterministic age-profile that reflects the average earnings
growth over the life-cycle. Idiosyncratic uncertainty enters via the persistent labor
component pih, which follows an AR(1) in logs,

log pih+1 = ρp log pih + νih+1, νih+1
iid∼ N

(
−1

2
σ2

ν , σ2
ν

)
as well as the purely transitory shock εih, distributed as

log εih+1
iid∼ N

(
−1

2
σ2

ε , σ2
ε

)
.
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I normalize the average wage level to unity and omit it from earnings altogether.

Belief updating and subjective expectations are identical to the retired household’s prob-
lem. The only additional assumption needed is the distribution of beliefs of newborns
with h = 0, which I discuss in the calibration section.

6 Calibration

6.1 Externally calibrated parameters

6.1.1 Demographics

Households enter the economy at the age of 20 and live for a maximum of 70 years
up to a maximum age of 89. They exogenously retire after the initial 45 years. The
age-dependent survival probabilities are taken from the U.S. period life tables (Arias
and Xu 2018) for the year 2015, using the values for the white male sub-population. For
the quarterly calibration, I assume that the survival probabilities are constant within

a year and given by π
s,qtr
h =

(
πs,annual

h

)1/4
. The implied life expectancy at birth is 80.4

years (i.e. 60.4 model years).

6.1.2 Labor income

For the deterministic age profile of earnings (ωh)
H
h=0 in (10), I use the estimates for the

high-school-educated sub-sample reported in Cocco, Gomes, and Maenhout (2005). This
profile also includes the replacement rate ρss for retirement benefits, which Cocco, Gomes,
and Maenhout (2005) estimate to be approximately 68% for this group.

I take the parameters (ρp, σ2
ν ) that govern the persistent earnings component as well as

the variance of the transitory shocks σ2
ε from Krueger, Mitman, and Perri (2016) which

they estimate from the PSID.

These parameter values are listed in Table 1. I normalize the (cohort-size-weighted)
deterministic earnings profile for working-age households to one, such that the average
earnings of working-age households are always unity.
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Description Value Source

Demographics
h Initial age (in years) 20
H Maximum attainable age (in years) 89
Hr Retirement age (in years) 65
πs

h Survival probabilities – US life tables (2015)

Earnings
ρp Auto-correlation of persistent earnings 0.9695 Krueger, Mitman, and Perri (2016)
σν Std. dev. of persistent earnings shock 0.1960 Krueger, Mitman, and Perri (2016)
σε Std. dev. of transitory earnings shock 0.2284 Krueger, Mitman, and Perri (2016)
ωh Age-dependent earnings profile – Cocco, Gomes, and Maenhout (2005)
ρss Retirement income replacement rate 0.6828 Cocco, Gomes, and Maenhout (2005)

Table 1: Demographic and earnings parameters (annual)

Description Value Source

Returns
R f Gross risk-free return 1.02 Cocco, Gomes, and Maenhout (2005)
µ Risk premium 0.04 Cocco, Gomes, and Maenhout (2005)
σ Volatility of risky returns 0.16 Cocco, Gomes, and Maenhout (2005)

Subjective beliefs
λ Belief updating weight 1.5 Malmendier and Nagel (2011)
– Cross-sectional mean of initial beliefs 0.04 –
– Cross-sectional std. dev. of initial beliefs 0.09 –

Table 2: Risky return and belief formation parameters (annual)

6.1.3 Beliefs and returns

I adopt the standard values for the risk-free interest rate, the risk premium and the
volatility of risky returns used in the household-finance literature. These are reported in
Table 2.

Turning to beliefs, Malmendier and Nagel (2011) estimate the shape parameter λ for the
experience-based learning model in (5), which governs the weighting of past realiza-
tions, for several outcome variables including stock market participation and the share
invested in stocks conditional on participation. Their point estimates are in the range
of approximately 1.3–1.9 at an annual frequency, depending on the exact specification.
I choose λ to be 1.5 for an annual model, which implies that a 30-year-old individual
assigns a weight of about 10% to the most recent observation. For the quarterly model, I
therefore choose λ = 2.0 so that households aged 30 update their beliefs by ≈ 2.5% as
new information arrives.

The initial distribution of beliefs used to simulate the economy is determined as follows:
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I assume that households observe risky returns for five years (20 periods in the quarterly
model) before becoming economically active and making investment choices. Their
initial belief distribution five years prior to entering the economy is identical to the risky
return distribution (as they only have this single observation), which they then update
according to the algorithm described above. This implies that when agents become
economically active at the age of 20, the cross-sectional distribution of their beliefs about
excess returns has a standard deviation of approximately 0.09 at an annual or 0.037 at a
quarterly frequency.13

Since excess returns are Gaussian and the updating rule prescribes a deterministic
(age-dependent) weight to be applied to new observations, this allows me to exactly
characterize the distribution of beliefs at each age. As the initial distribution is a linear
combination of Gaussian realizations, it is itself Gaussian at age h = 0. Applying the
belief updating rule in (4), the cross-sectional distribution at any age h + 1 is therefore
again Gaussian with a mean that evolves according to

Eµ̂ih = (1− αh)Eµ̂ih−1 + αhE
[

Rih − R f

]
= (1− αh)Eµ̂ih + αhµ (11)

where the expectation is taken over the distribution of households aged h. The law of
motion for the cross-sectional variance of within-cohort beliefs is

Var ( µ̂ih ) = (1− αh)
2 Var ( µ̂ih−1 ) + α2

h Var
(

Rih − R f
)

= (1− αh)
2 Var ( µ̂ih−1 ) + α2

hσ2 (12)

The evolution of beliefs in the cross-section is plotted in Figure 8. As equations (11) and
(12) suggest, if newborns’ beliefs are centered around the true excess return, beliefs will
on average remain unbiased at any age. Furthermore, the within-cohort variance of
beliefs collapses as a cohort ages, albeit at a slower pace than if agents had updated their
beliefs optimally, which I discuss in section 8 in the context of Bayesian learning from
experience.

13These differences stem from the fact that λ depends on the period length, and households have four
times as many observations in the quarterly model.
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Figure 8: Evolution of beliefs in the cross-section with experience-based learning as in Mal-
mendier and Nagel (2011, 2016).

6.2 Parameters determined by moment matching

I use the remaining preference parameters to approximately match the wealth distri-
bution relative to average earnings as obtained from the SCF.14 To this end, during the
simulation newborn households draw initial wealth levels that correspond to the wealth
distribution observed in the SCF for ages 20–25. This, however, turns out not to matter
much in this class of models as in the presence of an upward-sloping earnings profile
young households optimally consume their assets, thus leveling any differences in initial
endowments.15

The relative risk aversion γ is assumed to be 5 for both household types, as a value of this
magnitude is commonly used in the recent literature (Chang, Hong, and Karabarbounis
(2018), Catherine (2019), Vestman (2018)).16 The remaining parameters {β j}j, {φj}j, the
elasticity of intertemporal substitution ψ−1 and the fraction of impatient households are
set to values reported in Table 3.

A few comments are in order: while the discount factor heterogeneity seems large
compared to calibrations in other contexts such as Krusell and Smith (1998), who were

14As in Chang, Hong, and Karabarbounis (2018) who use the same SCF sample, the average earnings in the
data are assumed to be $40,000 per year.

15If permitted to do so, young households would in fact prefer to borrow against their future income to
smooth lifetime consumption.

16Setting a higher value such as γ = 10, which is also a commonly used value, makes matching the wealth
distribution almost impossible as it induces substantial precautionary savings in the presence of highly
persistent earnings risk. Thus the “poor” households end up being substantially richer than in the data.
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Description Value Source

γ Relative risk aversion 5 Standard
β j Discount factor 0.88, 1.06 –
ψ−1 Elasticity of intertemporal substitution 0.35 –
φj Weight on bequest utility 0.45, 10.0 –

– Fraction of impatient households 0.85 –

Table 3: Preference parameters (annual)

the first to introduce β-heterogeneity into a quantitative model, these magnitudes are
required to generate a plausible level of wealth inequality in this setting. The reason
is that in life-cycle models which already have a great deal of background risk, het-
erogeneity in the discount factors is less powerful (see Hendricks (2007), and Foltyn
and Olsson (2019) for a setting in which discount factor heterogeneity results from
differences in life expectancy). In contrast, in Krusell and Smith (1998), households
only face a low-persistence unemployment risk. Furthermore, without intergenerational
wealth transfers, as in the present model, any wealth built up by a cohort vanishes
as that generation exits the economy, thus preventing the accumulation of substantial
wealth which would be the case in infinite-horizon models such as Krusell and Smith
(1998).

Turning to the heterogeneity in the weight φj that households assign to their “warm-
glow” bequest utility, the differences seem large in the context of CRRA utility. However,
with EZW preferences, these values interact with the EIS and γ, so the effective difference
for this parametrization is much smaller.

Figure 9 compares the resulting wealth moments from the model to those obtained from
the SCF. The match is reasonably good, even though the model struggles to generate
the wealth concentration at the very top. In the tenth decile, which is not shown as it
makes the differences in the lower parts of the distribution hard to read, the model can
generate only about 60% of wealth holdings observed in the data.

7 Results

Before reporting the results for the benchmark calibration with per-period participation
costs, I first discuss the model without participation costs to illustrate to what extent
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Figure 9: Wealth distribution in SCF vs. model by wealth decile. Each dot shows the mean wealth
conditional on being in a given decile, normalized by average quarterly earnings. Data
source: SCF 1998–2007.

subjective beliefs can generate limited participation on their own.17

7.1 No participation costs

Starting with the model without participation costs, Figure 10 shows the average sim-
ulated household portfolio allocations in the cross-section and Figure 11 plots the cor-
responding graphs along the life-cycle. While neither model comes close to the data
moments, these figures illustrate the mechanism and the improvements due to subjective
beliefs.

First, subjective beliefs generate limited participation in the risky asset without imposing
any participation costs. In contrast, as is well-known, the participation rate conditional
on saving a positive amount is 100% in the “standard” model. Introducing subjective
beliefs pushes this value down to about 70% in the first wealth decile, and participation
is upward-sloping along the wealth distribution. The conditional risky share is slightly
tilted since poor households no longer choose to invest all their savings in stocks, while
the wealthy increase their stock holdings. The model with subjective beliefs performs
somewhat better than the rational-expectations variant, lowering the conditional risky

17In the appendix, section C additionally shows the effect of introducing subjective beliefs using an
alternative calibration along the lines of Cocco, Gomes, and Maenhout (2005), which has become a
benchmark paper in the household-finance literature. I argue that this parametrization generates wealth
levels that are highly counterfactual and is thus not well-suited to investigate portfolio choices along
the wealth distribution.
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Figure 10: Portfolio composition along the wealth distribution. Calibration without participation
costs.

share for households with fewer assets, and increasing it in the right-hand tail of the
distribution.

Over the life-cycle, Figure 11 shows that the differences between the fully-rational
and the subjective-beliefs models are again predominantly on the extensive margin, as
younger households are less likely to enter the stock market. Compared to the rational-
expectations model where almost all households choose to hold some risky assets, this
figure drops to 65% for those aged 20–25.

7.2 Benchmark model with participation costs

Since subjective beliefs alone do not bring participation down to the levels observed
in the data, a natural follow-up question is to what extent fixed participation costs
improve the model fit, and how much the effects differ from a fully-rational model in
that scenario. I therefore set κ, the fixed per-period participation cost that enters the
household budget constraint in (8), to κ = 0.01, i.e. to 1% of average per-period earnings
(this amounts to around $500 annually).

Figure 12 illustrates that participation along the wealth distribution in the model with
subjective beliefs improves considerably, and more so than in the standard model with
the same participation costs. In the latter setting, the fixed cost has no effect beyond
the second wealth decile, while it pushes participation down towards its empirical
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Figure 11: Portfolio composition over the life-cycle. Calibration without participation costs.

counterpart in the presence of subjective beliefs. The findings for the fully-rational model
are in line with previous literature on participation in the presence of fixed costs: modest
fixed participation costs only affect poor households with little financial wealth, but they
cannot rationalize limited participation among middle-class households. For example,
Vissing-Jorgensen (2003) reports that when attempting to match the participation rates
in each wealth decile using heterogeneous participation costs, she finds that the required
median cost ranges from $650–$1,450 (in 2003 USD), depending on the PSID wave. While
not being directly comparable, Briggs et al. (2019) estimate that a one-time entry cost of
more than $30,000 is needed in an otherwise standard life-cycle model to rationalize the
(low) participation response among lottery winners. In comparison, in the presence of
subjective beliefs, households who experienced low returns in the past expect low or
even negative returns in the future, and thus small or even no participation costs are
sufficient to exclude them from the stock market.

Whereas introducing participation costs on top of subjective beliefs substantially im-
proves the fit with data compared to a standard model, both models produce qualita-
tively similar predictions when it comes to the conditional risky share. Between the
20th and 70th percentiles of the wealth distribution, the risky share is almost identical
for the rational-expectations and subjective-belief models, while in the latter setting
it is somewhat higher for the wealthiest households since these are on average more
optimistic about stock returns.

A similar picture emerges over the life-cycle, shown in Figure 13: both the fully-rational
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Figure 12: Portfolio composition along the wealth distribution. Benchmark calibration with
participation costs.

and the subjective-beliefs model see improvements in the participation rates along the
age dimension, but the latter model is considerably closer to the data. However, the
conditional risky share is again very similar in both scenarios.

7.3 Mechanism: positive sorting over beliefs and wealth

The model with subjective beliefs helps explain the limited stock market participation
because it induces positive sorting across beliefs and a household’s position in the wealth
distribution. Consider a poorer household: one reason why a household has less wealth
in this model is that it experienced repeated low returns on its investment in the past.
These low return realizations at the same time induced the household to revise its beliefs
about average stock returns downward, and it consequently chooses to decrease the
fraction of financial wealth invested in the risky asset, or stays out of the stock market
altogether. The opposite holds for a wealthy household.

In the benchmark model, earnings uncertainty and life-cycle savings behavior also
determine a household’s position in the wealth distribution in addition to past returns,
unlike in the stylized example in section 4. There might very well be richer households
who are more pessimistic about risky returns because these households are wealthy due
to high earnings, or due to being close to retirement when the life-cycle asset profile
peaks, i.e. for reasons unrelated to their realized stock market returns. However, on
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Figure 13: Portfolio composition over the life-cycle. Benchmark calibration with participation
costs.

average, wealthier households are more optimistic about the stock market than poorer
ones.

To make this point, Figure 14 plots the CDF over wealth for ages 20,. . . , 80 for selected
percentiles of the subjective belief distribution.18 At the age of 20, the sorting mechanism
is not yet operational since newborns’ initial wealth levels and beliefs are assumed to
be uncorrelated. As households grow older, their position in the wealth distribution di-
verges conditional on their belief. By the age of 80, households that are in approximately
the 75th percentile of the belief distribution are substantially wealthier than those less
optimistic about excess returns: compared to a household with median beliefs, their
CDF is uniformly shifted to the right.

While subjective beliefs due to learning from experience induce a positive correlation
between beliefs and wealth in the population, for an individual household the shape
of the risky share policy function is qualitatively the same as in the standard model: as
shown in Figure 15, households diversify away from the risky asset as their cash-at-hand
increases, thereby creating the usual downward-sloping optimal risky share. However,
beliefs shift a household’s optimal risky share up or down, with more optimistic house-
holds choosing higher risky shares, while pessimistic households (here illustrated by
the 25th percentile of the belief distribution) choose to not invest in stocks at all. Even
though beliefs have large effects on individual behavior, these approximately average

18Given that newborn households start with subjective beliefs which are centered on the true excess return
in the cross-section, the median household shown in Figure 14 has the correct belief at any age.
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Figure 14: CDF over wealth for selected ages and percentiles of the subjective belief distribution.
Each line shows the distribution of wealth conditional on age and beliefs. Wealth
percentiles on the x-axis are computed for the overall population.

out in the aggregate, yielding an average conditional risky share that is not too different
from the standard model.

I end this section with a more technical discussion on why the model with subjective
beliefs creates limited participation even without imposing any participation costs. To
simplify the exposition, I consider a one-period portfolio-choice problem with CRRA
preferences and no participation costs, but the same reasoning carries over to the full
model. Household i in this case maximizes

max
ξ

Ei

[
(aRp

ih+1 + yih+1)
1−γ

1− γ

]
s.t. Rp

ih+1 = ξ
(

Rih+1 − R f
)
+ R f , ξ ∈ [0, 1]

where a > 0 is cash-at-hand, yih+1 is some (stochastic) realization of non-financial income
tomorrow and Rp

ih+1 is tomorrow’s return on the household’s portfolio. Denoting the
Lagrange multipliers on the constraints ξ ≥ 0 and ξ ≤ 1 by λ0 and λ1, respectively, the

34



0
25

50
75

10
0

R
is

ky
 s

ha
re

 (%
)

Age 20 Age 40

0 20 40 60 80 100 120 140
Cash-at-hand

0
25

50
75

10
0

R
is

ky
 s

ha
re

 (%
)

Age 60

0 20 40 60 80 100 120 140
Cash-at-hand

P25 belief
P50 belief
P75 belief

Age 80

Figure 15: Household policy function for the optimal risky share. The red line shows the risky
share adopted by an overly optimistic household (located at the 75th percentile of the
belief distribution), while the dashed black line represents the choices of a household
with median beliefs, and the blue line those of a pessimistic household at the 25th
percentile.
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first-order condition for the optimal risky share ξ is given by

Ei

[ (
aRp

ih+1 + yih+1
)−γ (Rih+1 − R f

) ]
+ λ0 − λ1 = 0

where λ0 ≥ 0, λ1 ≥ 0 and the usual complementary-slackness conditions apply.

Consider a household that chooses to not participate, i.e. ξ = 0 which implies that λ0 > 0
and λ1 = 0: assuming that yih+1 is independent of Rih+1, as is the case in this paper as
well as in many others in the household-finance literature, the expectation can be split to
obtain

Ei

[ (
aR f + yih+1

)−γ
]

︸ ︷︷ ︸
expected MU

×Ei

[
Rih+1 − R f

]
︸ ︷︷ ︸

risk premium

+λ0 = 0 (13)

where the first term represents the expected marginal utility when saving everything in
the risk-free asset, and the second term is the expected excess return (or risk premium).
Expected marginal utility is unambiguously positive, and a rational expectations model
usually imposes that Ei

[
Rih+1 − R f

]
> 0 in line with historical data on stock-market

performance. In that case, the condition in (13) cannot hold for ξ = 0 as all terms on the
l.h.s. are positive, and non-participation is therefore sub-optimal. On the other hand,
in a model with subjective beliefs and learning from experience, households who had
repeated low return realizations might, in fact, expect Ei

[
Rih+1 − R f

]
< 0, and thus

(13) is satisfied for ξ = 0 and some λ0 > 0. These households will choose not to hold
the risky asset even in the absence of participation costs. As discussed above, due to
the positive sorting across beliefs and wealth, such households will one average be
poorer. This gradient of the perceived risk premium along the distribution is illustrated
in Figure 16 for the benchmark model with participation costs.

8 Bayesian learning from experience (BLE)

The benchmark calibration uses the belief updating method from Malmendier and Nagel
(2011, 2016). A natural alternative is to assume that agents incorporate new data in
an optimal way using Bayes’ rule, thus efficiently weighting all past observations, but
ignoring information prior to becoming economically active themselves. The only differ-
ence to a standard rational-expectations model is thus the restriction that households
only learn from their own experience.
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Figure 16: Average beliefs about individual excess returns along the wealth distribution. Each
dot represents the average beliefs of households conditional on being in a given wealth
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8.1 Belief updating

In the Bayesian framework, households at any age h have a prior belief about mean
excess returns, which I assume to be Gaussian and given by

µ ∼ N
(
µ̂ih, τhσ2) (14)

The prior is centered around µ̂ih, and the uncertainty associated with the belief is
expressed as a scaling factor τh applied to the known variance of risky returns σ2. Within
a cohort, there will be dispersion in households’ mean belief µ̂ih due to different realized
return histories, while the variance τhσ2 is identical for all agents of the same age and
is thus not indexed by i. This is a consequence of assuming that all newborns are
assigned the same uncertainty about their beliefs τ0 and update their beliefs each period,
irrespective of whether they invest in stocks or not.

Newborns draw the initial beliefs about excess returns from a Gaussian distribution,

µ̂i0
iid∼ N

(
µ, σ2

0
)

(15)

which is centered around the true excess return. The variance σ2
0 is set to the same value

as in the benchmark model. Thus, both economies start off with the same distribution of
mean beliefs.
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As new return realizations are observed, households update their beliefs as follows:
both the prior and the excess return were assumed to be Gaussian to obtain the usual an-
alytically tractable case in which the posterior distribution is Gaussian and the updating
rule is given by

µ̂ih =

[ (
τhσ2)−1

(σ2)−1 + (τhσ2)−1

]
µ̂ih−1 +

[ (
σ2)−1

(σ2)−1 + (τhσ2)−1

] (
Rih − R f

)
=

1
1 + τh

µ̂ih−1 +
τh

1 + τh

(
Rih − R f

)
Bayesian learning from experience therefore leaves the household problem virtually un-
changed, except that the update weight αh in (4) is now defined as

αh =
τh

1 + τh

The variance of the posterior distribution is given by the standard formula

τh+1σ2 =
1

(τhσ2)−1 + (σ2)−1

which implies that the scaling factor evolves according to the non-linear difference
equation

τ−1
h+1 = τ−1

h + 1

Since limh→∞ τh = 0, for infinitely-lived households their beliefs eventually collapse into
a degenerate distribution around the true expected excess return, thus converging to the
rational expectations equilibrium.

As illustrated in Figure 7, the weights assigned to past observations under the assump-
tion of BLE differ from the setup in Malmendier and Nagel (2011, 2016). With BLE, the
weight assigned to the most recent observation decreases more rapidly as households
age, which implies that the cross-sectional distribution of mean beliefs clusters more
tightly around the true excess return for older cohorts. This is illustrated in Figure 17
for selected ages: while the distributions are identical by construction at age 20 when
newborns enter the economy, with Bayesian learning the cross-sectional dispersion
collapses somewhat faster around the true expected excess return (which is ≈ 0.97% in
the quarterly calibration) as a cohort grows older. This, in turn, dampens any effect of
subjective beliefs on the portfolio composition in the cross-section, moving the model
closer to the rational-expectations framework.
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Figure 17: Cross-sectional distribution of mean beliefs at selected ages for Bayesian learning
from experience and experience-based learning as in Malmendier and Nagel (2011,
2016).
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8.2 Predictive distribution

Besides the faster convergence towards the true expected excess return, there is an
additional conceptual difference as compared to the benchmark model: households
factor in the uncertainty associated with their mean belief when evaluating the riskiness
of their portfolio. For a household i of age h, the subjective expected risky return
conditional on some belief µ is given by

Ei

[
Rih+1 − R f

∣∣∣ µ
]
= Ei

[
µ + zih+1

∣∣∣ µ
]
= µ

and therefore, unconditionally, applying the law of iterated expectations, one obtains the
same expression as in the Malmendier and Nagel (2011, 2016) setting, i.e.

Ei

[
Rih+1 − R f

]
= Ei

[
Ei

[
Rih+1 − R f

∣∣∣ µ
] ]

= Eiµ = µ̂ih

This no longer holds for the variance, however. With Bayesian learning, the conditional
variance is

Vari

(
Rih+1 − R f

∣∣∣ µ
)
= Vari

(
µ + zih+1

∣∣∣ µ
)
= σ2

while the unconditional variance, obtained from the law of total variance, evaluates
to

Vari

(
Rih+1 − R f

)
= Ei

[
Vari

(
Rih+1 − R f

∣∣∣ µ
) ]

+ Vari

(
Ei

[
Rih+1 − R f

∣∣∣ µ
] )

= σ2 + τhσ2

The difference as compared to experience-based learning emerges because in the latter
case, the beliefs are not uncertain from a household’s perspective and thus, they do not
amplify the perceived variance of risky returns. Conversely, the Bayesian updater acts
as if the risky return process was effectively defined as

Rih+1 − R f = µ̂ih +
√

1 + τh · zih+1 , zih+1
iid∼ N

(
0, σ2)

instead of (3). In principle, this additional perceived variance of risky returns stemming
from the uncertainty of beliefs could be used to generate a lower participation or risky
shares, in particular for young households with a higher τh. However, as I discuss in the
next section, the effect turns out to be negligible.
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8.3 Calibration

I use the same calibration as for the benchmark model. In particular, as mentioned above,
I set the variance of initial mean beliefs σ2

0 in (15) to the same value as in the benchmark
listed in Table 2.

The Bayesian learning model has one additional parameter τ0 which controls newborn
households’ uncertainty about their beliefs. I set this parameter such that households at
the age of 25 apply the same weight to the most recent realization as under experience-
based learning, which is approximately 3.04% at a quarterly frequency. The initial
scaling factor required to obtain the same value with Bayesian learning is τ0 = 0.085.
Thus, newborns perceive the effective return variance to be only 8.5% higher than
in the benchmark model, which is not sufficient to substantially affect their portfolio
choices.

8.4 Results for the economy with Bayesian updating

The portfolio composition for the economy populated with Bayesian updaters is shown
in Figure 18 and Figure 19 together with the benchmark model. Qualitatively, there
are hardly any differences as compared to the benchmark model, neither across the
wealth distribution, nor along the life-cycle. This result is hardly surprising given
the preceding discussion, as the cross-sectional distributions of beliefs are close in
both economies, and the perceived additional variance of risky returns due to belief
uncertainty is modest. The results for the model without fixed participation costs (not
shown) exhibit the same pattern, i.e. there are almost no differences between the two
updating rules.

9 Correlated returns in the cross-section

In this section, I relax the assumption that returns are i.i.d. in the cross-section. An
alternative model of household i’s risky return is to assume a common component that
arises because households invest a fraction of their portfolio into a market index. Denote
by re

mt the excess return of such an index fund. Individual excess returns re
it+1 in t + 1
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Figure 18: Portfolio composition along the wealth distribution. Bayesian learning from experi-
ence vs. benchmark.
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Figure 19: Portfolio composition over the life-cycle. Bayesian learning from experience vs. bench-
mark.
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are then given by19

re
it+1 = Rit+1 − R f = βmre

mt+1 + uit+1

with

re
mt+1

iid∼ N
(
µm, σ2

m
)

uit+1
iid∼ N

(
µu, σ2

u
)

Corr (re
mt+1, uit+1) = 0

Here uit+1 is an uncorrelated idiosyncratic component that arises due to underdiversifi-
cation. I assume that a household’s portfolio choice is between investing in the risk-free
asset and this composite risky asset, but households cannot choose the fraction of risky
assets invested in the market index. The (objective) risk premium and the variance of
this individual excess return are thus given by

E
[

re
it+1

]
= µu + βmµm Var

(
re

it+1
)
= β2

mσ2
m + σ2

u

Furthermore, the time-t correlation between any two households’ gross returns is

Corr
(

Rit, Rjt
)
=

β2
mσ2

m
β2

mσ2
m + σ2

u

I use the empirical counterparts of the above moments reported in Calvet, Campbell,
and Sodini (2007) for Swedish data to pin down the additional parameters βm, σ2

m and
σ2

u , as described in the calibration section below.

Implementing this model poses two additional challenges: first, households can be
uncertain about both µm and µu and thus have to form beliefs about both, which intro-
duces an additional continuous state variable into the household problem. Second, the
economy no longer has a time-invariant ergodic distribution over the household’s state
variables, but depends on the sequence of aggregate realizations (re

mt)t which go back to
the oldest cohort’s date of birth.

In addition, this setting allows me to distinguish between public and private information.
In the benchmark model it was assumed that households always observe the (potentially
counterfactual) realization of their idiosyncratic return, regardless of whether they chose
to invest in the risky asset or not. In this section, I instead assume that households always
see the excess return on the market index re

mt which is public information. However, they
observe the purely idiosyncratic return component uit only if they choose to participate.

19Unlike in the previous sections where there was no need to distinguish between a household’s age h and
calendar time t, the notation in this section is adapted to reflect the fact that investors of different ages
now receive the same market returns re

mt at time t.
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This introduces a role for active learning, as households who pay the participation cost
to invest in the stock market at the same time pay to acquire new information about µu

and can thus update their belief µ̂u
it.

9.1 Modified household problem

The household problem mostly remains the same as in the benchmark model of section 5,
so I discuss the changes for the retired household only. Assuming that households are
uncertain about the means of both the market and idiosyncratic returns, the expanded
state vector is now given by x =

(
h, a, p, µ̂m

i , µ̂u
i , j
)

where µ̂m
i is the belief about the

market-return risk premium µm and µ̂u
i is the belief about µu. Retired households

maximize

Vr
jh (a, p, µ̂m

i , µ̂u
i ) = max

c, b, ξ

c1−ψ + β j

[
πs

hEi

[ (
Vr

jh+1
(
a′, p, (µ̂m

i )
′ , (µ̂u

i )
′))1−γ

]

+ (1− πs
h)Ei

[ (
Vb

j
(
a′b
))1−γ

]] 1−ψ
1−γ


1

1−ψ

subject to the same constraints as before. The belief about the market excess return is
updated according to

(µ̂m
i )
′ = (1− αh+1) µ̂m

i + αh+1re
mt+1

each period. On the other hand, µ̂u
i is updated only if the household chooses a non-zero

risky share ξ, i.e.

(µ̂u
i )
′ =

(1− αh+1)µ̂
u
i + αh+1uit+1 if ξ > 0

µ̂u
i else

9.2 Calibration

Calvet, Campbell, and Sodini (2007) report that in Swedish register data on household
portfolios βm ≈ 0.87, which they obtain by regressing individual portfolio returns onto
the MSCI world index. Additionally, the average idiosyncratic variance share in the

44



Description Value Source

Risky return
µ Risk premium 0.04 Cocco, Gomes, and Maenhout (2005)
σ Volatility of risky return 0.16 Cocco, Gomes, and Maenhout (2005)
βm Market-β 0.87 Calvet, Campbell, and Sodini (2007)
– Share of idiosyncratic variance 60% Calvet, Campbell, and Sodini (2007)

Market return
µm Risk premium of market return 0.04 Cocco, Gomes, and Maenhout (2005)
σm Volatility of market return 0.16 Cocco, Gomes, and Maenhout (2005)

Individual return
µu Risk premium of idiosyncratic return (1− βm)µ –
σu Volatility of idiosyncratic return 0.1705 –

Table 4: Parameters for the model with cross-sectionally correlated returns (annual). All remain-
ing parameters are unchanged from the benchmark calibration.

Swedish data is reported to be

σ2
u

β2
mσ2

m + σ2
u
≈ 60% , (16)

which implies that the cross-sectional correlation of returns is approximately 35%.20

To make the results as comparable to the benchmark model as possible, I choose the
same overall risk premium and variance as reported in Table 2, i.e.

Et
[

re
it+1

]
= µ Vart

(
re

it+1
)
= σ2 (17)

I assume that µm = µ and σm = σ since the values for (µ, σ) imposed here are used in
the household-finance literature to capture the moments of a broad market index in
the first place. This implies that µu = (1− βm)µ needs to be imposed for (17) to hold.
Finally, given βm = 0.87, equation (16) pins the remaining parameter to be σu = 17.05%
annually. This calibration is summarized in Table 4.

While one could alternatively assume that individual portfolios have different re-
turn moments than the market index, the above assumptions ensure that in a partial-
equilibrium setting, a rational-expectations investor is indifferent to which share of the
risky portfolio is invested in the market index, as the individual return moments are
unaffected.

20Calvet, Campbell, and Sodini (2007) point out that both βm and the idiosyncratic variance share are quite
heterogeneous in the population. Given the already large state space of the model presented in this
section, I ignore this additional source of heterogeneity.
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Lastly, in the model with market returns, the question arises which initial belief newborn
investors should be assigned. Here I exactly follow the approach in Malmendier and
Nagel (2011, 2016), who postulate that an individual of age ageit = h + hit will form
beliefs based on the returns observed in t− 1, . . . t− h− hit going back to his or her year
of birth. Thus, every newborn at time t has the same belief about market returns, as they
all experienced the same history. As for the newborns’ distribution of µ̂u

it, I adopt the
same approach as in the benchmark model to generate an initial distribution that is on
average unbiased and has the cross-sectional standard deviation previously reported in
Table 2.

9.3 Results

To interpret the results presented below, it is worthwhile to understand how these
are generated. Since the economy now has an aggregate state given by the market
return history going back to the birth date of the oldest cohort, every statistic used to
characterize the portfolio composition in the cross-section or along the life-cycle depends
on a particular realization of this market return time series. I address this issue by
“bootstrapping” N = 250 such market return time series and computing the implied
portfolio composition moments for each particular history.

Figure 20 shows the distribution of portfolio allocations along the wealth distribution
from this bootstrapping exercise. Each dot represents the average of the 250 simulated
economies for a given wealth bin, while the darker shaded areas represent the interquar-
tile range, and the lighter shaded areas indicate the range which brackets 95% of the
simulated economies.

This graph should be compared to the benchmark economy without aggregate market
returns that was previously shown in Figure 12. Clearly the average of all simulated
economies aligns well with both the participation rates and the conditional shares
in that figure and thus, the findings from the benchmark model with i.i.d. returns
continue to hold. Figure 21 shows the portfolio composition over the life-cycle and
should be contrasted with Figure 13 for the benchmark model. Again, the mean over
all simulations is quite close the the portfolio composition of the benchmark econ-
omy.

Both graphs show that the bootstrapped moments of the model without subjective
beliefs (shown in black) exhibit substantially less variation. In that economy, market
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Figure 20: Portfolio composition along the wealth distribution. Model with participation costs
and aggregate market returns. Dots indicate bin averages over simulated economies.
Dark shaded areas show the interquartile range of simulated moments, while light
shaded areas represent the range containing 95% of simulations.
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Figure 21: Portfolio composition over the life-cycle. Model with participation costs and aggregate
market returns. Dots indicate bin averages over simulated economies. Dark shaded
areas show the interquartile range of simulated moments, while light shaded areas
represent the range containing 95% of simulations.
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Figure 22: Beliefs about the excess market return re
mt and the individual excess return re

it for
naive vs. sophisticated households in the model with participation costs. Dots indicate
bin averages over simulated economies. Shaded areas show the interquartile range of
simulated moments.

return realizations (which are assumed to be i.i.d. over time) have almost no persis-
tent effects other than on wealth accumulation, while in the model with subjective
beliefs, they affect cohort-specific beliefs about market returns for a prolonged period of
time.

In Figure 22, I report the analogue of Figure 16 for the economy with aggregate market
returns. The beliefs about individual mean excess returns shown in Figure 22 are
computed as µ̂it = βmµ̂m

it + µ̂u
it. The graph illustrates that just like in the benchmark

model, there is a positive sorting across beliefs about individual returns and wealth
(right-hand panel); however, on average no such sorting exists with respect to beliefs
about market returns (left-hand panel). This is due to the fact that conditional on calendar
year and age, all households hold the same beliefs about the market return irrespective
of their wealth.

The right-hand panel of Figure 22 also highlights that in the setting discussed in this
section, the differences between economies populated by naive vs. sophisticated agents
are more pronounced. Conversely, in the benchmark model, where households update
their beliefs even if they do not participate, naive and sophisticated households hold
almost identical beliefs, as shown in Figure 39 in the appendix.

If belief updating is conditional on participation, and participation is costly due to
per-period participation costs, the beliefs held by naive and sophisticated agents diverge.
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Figure 23: Beliefs about the excess market return re
mt and the individual excess return re

it for naive
vs. sophisticated households in the model without participation costs. Dots indicate
bin averages over simulated economies. Shaded areas show the interquartile range of
simulated moments.

The reason is the following: sophisticated households are in a sense more risk-averse
because they anticipate that in case of a low return realization tomorrow, they will adjust
their beliefs about excess returns downward. Thus, they expect to earn a lower return
on the investment choices they make tomorrow. Given that the EIS is assumed to be
lower than one, they anticipate to increase their savings tomorrow when a bad shock
hits, thereby lowering consumption. Low returns tomorrow consequently coincide with
higher marginal utility tomorrow, which tilts the risky share chosen today downward
(this is evident from the policy functions shown in Figure 40 in the appendix for the
benchmark model). In the presence of participation costs, households who would choose
a lower risky share conditional on participating have a higher incentive not to hold
the risky asset at all. This effect is even more pronounced for households who are
already more pessimistic about (idiosyncratic) returns, and since they choose not to
participate in this case, they never update their pessimistic beliefs about idiosyncratic
returns. Via this mechanism, sophisticated households are more likely to end up in
non-participation as an absorbing state. Figure 23 shows that costly participation is
a key for this mechanism to be operational: without it, there is almost no difference
between the cross-sectional beliefs in an economy with naive vs. one with sophisticated
agents.

Lastly, Figure 24 and Figure 25 contrast the portfolio composition across the wealth
distribution and over the life-cycle for naive vs. sophisticated agents. These graphs
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Figure 24: Portfolio composition along the wealth distribution. Naive vs. sophisticated house-
holds. Model with participation costs and aggregate market returns. Dots indicate bin
averages over simulated economies. Shaded areas show the interquartile range of
simulated moments.

should be compared to those for the benchmark economy shown in Figure 37 and
Figure 38 in the appendix. For the reasons discussed above, the differences in the present
model compared to the benchmark are now more substantial, also among middle-class
and younger households.

10 Summary and conclusion

In this paper, I propose a mechanism to help explain the empirically observed hetero-
geneity of households’ financial portfolios along the wealth distribution, in particular
the almost monotonically increasing stock market participation rate. To this end, I incor-
porate empirical evidence on how households form beliefs based on past realizations of
asset returns into an otherwise standard household-finance model. Unlike in a fully ra-
tional model, households overweight past observations of returns on their idiosyncratic
portfolios when forming beliefs about excess returns, thus generating a belief dispersion
in the cross-section that does not fully disappear over time – in this setting, households
do not necessarily learn the true excess return in their lifetime.

Combined with underdiversification and thus idiosyncratic return histories, experience-
based learning of this kind introduces heterogeneity in households’ participation and
portfolio allocation choices in a way that moves the model’s predictions closer to the
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Figure 25: Portfolio composition over the life-cycle. Naive vs. sophisticated households. Model
with participation costs and aggregate market returns. Dots indicate bin averages
over simulated economies. Shaded areas show the interquartile range of simulated
moments.

data. As above-average return realizations simultaneously move a household upwards
in the wealth distribution and improve the household’s outlook on future returns, this
mechanism induces positive sorting in the joint distribution of wealth and beliefs: on av-
erage, the most wealthy households end up being the most optimistic and, consequently,
they increase the fraction held in risky assets compared to a fully-rational agent. The
opposite holds for households at the other end of the wealth distribution, at least to the
extent that they are poor due to low return realizations in the past, and the participation
rate within this group drops as compared to a standard model.

It is a quantitative question of how much of this intuitively appealing mechanism
survives in a full life-cycle model where additional factors affect a household’s wealth
but not its beliefs about stock returns. With a highly-persistent earnings uncertainty
and a hump-shaped wealth profile over the life-cycle, asset returns are neither the only
nor the most dominant driver of a household’s position in the wealth distribution. The
wealthy in this framework are rich because they were lucky in how their investment
paid off, or because they had repeated high earnings draws – the latter, however, have
no effect on their beliefs about excess returns, and hence on their portfolio choice.
Additionally, in a life-cycle framework, the newborns enter the economy without a
history of past returns correlated with their position in the wealth distribution, further
muting the effect of subjective beliefs.
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The preceding sections have shown that subjective beliefs and experience-based learning
are able to generate limited participation even in such a setting. Adding a reasonably
small participation cost further improves the model fit with the data, above and beyond
what a standard model with the same participation cost can achieve, in particular when
it comes to the limited participation observed among middle-class households. This
indicates that the mechanism presented here can potentially interact with other building
blocks to move the model prediction even closer to the data. Exploring such extensions
is left to future research.
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A Additional evidence from the Survey of Consumer Finances

A.1 Detailed household balance sheets

Avg. (in $) Median (in $) Participation (in %)

Checking accounts 4,769 1,211 82.1
Savings accounts 10,243 105 55.0
Life insurance 9,131 0 26.0
Mutual funds (safe) 7,454 0 5.8
Retirement accounts (safe) 31,084 0 43.0

Total safe assets 98,638 14,149 92.9

Stocks 41,262 0 20.0
Mutual funds (risky) 20,749 0 14.2
Retirement accounts 44,957 0 46.2

Total risky assets 128,682 1,514 54.8

Total financial assets 227,320 24,631 93.1

Consumer debt 3,000 0 47.4
Education loans 2,633 0 13.7

Home ownership – – 69.4
Housing wealth (owners) 344,354 181,109 100.0
Mortgages (owners) 106,355 59,057 70.2
Net housing wealth (owners) 237,999 101,346 100.0

Actively managed businesses 89,669 0 11.3
Passively-held businesses 10,439 0 1.4

Total gross wealth 555,657 162,606 94.8

Net worth 477,458 93,742 –

Table 5: Summary statistics for disaggregated households’ balance sheets. Housing wealth and
mortgage statistics are reported for the sub-sample of homeowners. Data source: SCF
1998–2007.
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Avg. (in $) Median (in $) Participation (in %)

Checking accounts 5,122 1,333 88.2
Savings accounts 11,002 263 59.1
Life insurance 9,807 0 27.9
Mutual funds (safe) 8,006 0 6.2
Retirement accounts (safe) 33,376 0 46.2

Total safe assets 105,940 17,697 99.8

Stocks 44,316 0 21.5
Mutual funds (risky) 22,285 0 15.2
Retirement accounts 48,272 0 49.6

Total risky assets 138,208 3,356 58.8

Total financial assets 244,148 31,254 100.0

Consumer debt 3,196 0 49.8
Education loans 2,781 0 14.1

Home ownership – – 72.8
Housing wealth (owners) 350,836 182,850 100.0
Mortgages (owners) 108,341 61,060 70.7
Net housing wealth (owners) 242,495 103,491 100.0

Actively managed businesses 96,255 0 12.0
Passively-held businesses 11,212 0 1.5

Total gross wealth 595,420 186,239 100.0

Net worth 511,933 111,811 –

Table 6: Summary statistics for disaggregated households’ balance sheets for sub-sample with
positive financial wealth. Housing wealth and mortgage statistics are reported for the
sub-sample of homeowners. Data source: SCF 1998–2007.

A.2 Portfolio composition across the wealth distribution

In this section, I present additional evidence on the composition of household portfo-
lios observed in the SCF. In Figure 26, I plot net total wealth (net worth) on the x-axis,
which includes all wealth components (including housing) after deducting all house-
hold liabilities (including mortgages). Figure 27 shows the portfolio allocation along
percentiles of gross financial wealth, while Figure 28 reports portfolio choices over the
distribution of financial wealth net credit-card debt and consumer loans. Last, Figure 29
plots those moments after additionally subtracting education loans from safe financial
assets.

59



0 25 50 75 100
Net worth percentiles

0
25

50
75

10
0

Pe
rc

en
t

Participation rate

0 25 50 75 100
Net worth percentiles

Gross share
Net share

Conditional risky share

Figure 26: Portfolio composition along percentiles of net worth. Each dot represents two percent
of households. Data source: SCF 1998–2007.
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Figure 27: Portfolio composition along percentiles of gross financial wealth. Each dot represents
two percent of households. Data source: SCF 1998–2007.
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Figure 28: Portfolio composition along percentiles of financial wealth net of consumer debt. Each
dot represents two percent of households. Data source: SCF 1998–2007.
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Figure 29: Portfolio composition along percentiles of financial wealth net of consumer debt and
education loans. Each dot represents two percent of households. Data source: SCF
1998–2007.
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A.3 Disaggregation by homeownership status

This section contains additional graphs disaggregating household portfolio allocations
by homeownership status. In Figure 30, I show that financial portfolios are comparable
conditioning on net worth. Figure 31 reports portfolio choices by gross financial wealth,
while Figure 32 and Figure 33 illustrate that the differences are even smaller when
plotting against the deciles of net financial wealth.
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Figure 30: Portfolio composition along percentiles of net worth by homeownership status. Wealth
percentiles are computed for the pooled sample of owners and renters. Plots show
averages conditional on wealth percentile and homeownership status. Data source:
SCF 1998–2007.

62



0 25 50 75 100
Gross fin. wealth percentiles

0
25

50
75

10
0

Pe
rc

en
t

Participation rate

0 25 50 75 100
Gross fin. wealth percentiles

Owners
Renters

Conditional risky share

Figure 31: Portfolio composition along percentiles of gross financial wealth by homeownership
status. Wealth percentiles are computed for the pooled sample of owners and renters.
Plots show averages conditional on wealth percentile and homeownership status.
Data source: SCF 1998–2007.
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Figure 32: Portfolio composition along percentiles of financial wealth net of consumer debt by home-
ownership status. Wealth percentiles are computed for the pooled sample of owners
and renters. Plots show averages conditional on wealth percentile and homeowner-
ship status. Data source: SCF 1998–2007.
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Figure 33: Portfolio composition along percentiles of financial wealth net of consumer debt and
education loans by homeownership status. Wealth percentiles are computed for the
pooled sample of owners and renters. Plots show averages conditional on wealth
percentile and homeownership status. Data source: SCF 1998–2007.
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B Recursive formulation of experience-based learning

In their paper, Malmendier and Nagel (2011) postulate that the beliefs about returns
in period t are a weighted average of past realizations prior to t, going back as far as
a person’s year of birth. The index of historical returns proposed by Malmendier and
Nagel (2011) is given by equations (5) and (6) in the main text.

Denote the new excess return observation at the beginning of period t by re
it = Rt − R f .

In this section, I ignore whether Rt has an idiosyncratic return component and drop any
household-specific index i. The historical return index in Malmendier and Nagel (2011),
adjusted to the notation used in the present paper and the fact that age h = 0 in the
model corresponds to h actual years, can then be written as

µ̂it =
∑h+hit−1

k=1 (h + hit − k)λ re
t−k+1

∑h+hit−1
k=1 (h + hit − k)λ

where µ̂it is the belief about mean excess returns by agent i of age hit in period t after
observing the risky realization at the beginning of period t. Note that, as in Malmendier
and Nagel (2011), the above expression is not defined for h + hit ≤ 1, i.e. they as-
sume that the first return realization taken into account is the one that occurred at age
one.

The recursive updating weight can be derived as follows:

µ̂it =
∑h+hit−1

k=1 (h + hit − k)λre
t−k+1

∑h+hit−1
k=1 (h + hit − k)λ

=
(h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ

re
t +

∑h+hit−1
k=2 (h + hit − k)λre

t−k+1

∑h+hit−1
k=1 (h + hit − k)λ

=
(h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ

re
t +

∑h+(hit−1)−1
k=1 (h + (hit − 1)− k)λre

t−(k−1)+1

∑h+hit−1
k=1 (h + hit − k)λ

=
(h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ

re
t

+
∑h+(hit−1)−1

k=1 (h + (hit − 1)− k)λ

∑h+hit−1
k=1 (h + hit − k)λ

∑h+(hit−1)−1
k=1 (h + (hit − 1)− k)λre

t−(k−1)+1

∑h+(hit−1)−1
k=1 (h + (hit − 1)− k)λ

=

[
(h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ

]
re

t +

[
∑h+(hit−1)−1

k=1 (h + (hit − 1)− k)λ

∑h+hit−1
k=1 (h + hit − k)λ

]
µ̂it−1

=

[
(h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ

]
re

t +

[
∑h+hit−1

k=2 (h + hit − k)λ
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]
µ̂it−1
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Furthermore, since

1− (h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ

=
∑h+hit−1

k=2 (h + hit − k)λ

∑h+hit−1
k=1 (h + hit − k)λ

the recursive updating equation can be written as

µ̂it = (1− αit)µ̂it−1 + αitre
t

with the weight on the most recent observation given by

αit =
(h + hit − 1)λ

∑h+hit−1
k=1 (h + hit − k)λ
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C Alternative calibration similar to Cocco et al. (2005)

This section illustrates how the model with subjective beliefs performs using a more
“standard” calibration. To this end, to the extent possible, I adopt the parameters used in
Cocco, Gomes, and Maenhout (2005), which have become somewhat of a benchmark
model in the household-finance literature, and contrast the resulting portfolio allocation
across the wealth distribution and over the life-cycle.21 Unlike in the rest of the paper,
I therefore set the risk-aversion to γ = 10, the elasticity of intertemporal substitution
to 1/γ, the annual discount factor to β = 0.96, and turn off the bequest motive. As in
Cocco, Gomes, and Maenhout (2005), the participation cost κ is set to zero and there is
no preference heterogeneity, unlike in the main text. These parameters are summarized
in Table 7.

Description Value Source

β Discount factor (annualized) 0.96 Cocco, Gomes, and Maenhout (2005)
γ Risk aversion 10 Cocco, Gomes, and Maenhout (2005)
ψ−1 Elasticity of intertemporal substitution 0.1 Cocco, Gomes, and Maenhout (2005)
φ Weight on bequest utility 0 Cocco, Gomes, and Maenhout (2005)

κ Participation cost 0 Cocco, Gomes, and Maenhout (2005)

Table 7: Parameters used for alternative calibration, taken from Cocco, Gomes, and Maenhout
(2005) where applicable. The remaining parameters are unchanged from the benchmark
calibration in the main text.

The resulting portfolio composition across the wealth distribution is shown in Figure 34,
and Figure 35 plots averaged household choices over the life-cycle.

Whereas participation rates along the wealth distribution look similar to the results
reported for the model without participation costs in the main text, the conditional
risky share in this calibration is considerably lower. The reason is that this “standard”
calibration performs poorly in terms of matching the wealth distribution, generating
households that hold substantially more assets than in the data. Since the optimal
risky share is decreasing in wealth, this generates a lower conditional risky share in the
cross-section.

To illustrate this, I plot gross total wealth as reported in the SCF for each wealth decile
(approximately $117,000 for the 5th decile), expressed as multiples of average quarterly
earnings, and contrast these values with their model counterparts.22 Evidently, both mod-

21My model implementation does not have any heterogeneous income profiles for three education groups
as in Cocco, Gomes, and Maenhout (2005). Additionally, their stochastic earnings process features a unit
root, while the one used here follows an AR(1), albeit with a very high persistence. The results for the
“standard” model presented here are thus not identical to those in Cocco, Gomes, and Maenhout (2005).

22I omit the highest decile as this makes the differences for the lower deciles hard to read. Both models do
even worse when it comes to matching the 10th decile, as there is no mechanism present to generate the
thick right tail of the wealth distribution.
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Figure 34: Portfolio composition along the wealth distribution. Parameters as reported in Table 7.
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Figure 35: Portfolio composition over the life-cycle. Parameters as reported in Table 7.
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Figure 36: Wealth distribution obtained using “standard” calibration. Each dot shows the mean
wealth conditional on being in a given decile, normalized by average quarterly earn-
ings. Parameters as reported in Table 7. Data source: SCF 1998–2007.

els miss the empirical wealth distribution by a wide margin. For example, median wealth
is approximately three times higher in the model than in the data.
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D Results for the benchmark model with sophisticated
households

This section reports the results for the benchmark calibration, but assuming that house-
holds are sophisticated and thus anticipate that they will update their beliefs in the future
as new return realizations are observed. I focus on the case with per-period participation
costs since the differences between the naive and the sophisticated models are very
similar in both cases. Figure 37 shows the cross-sectional composition generated by the
model with sophisticated agents, and how it compares to the benchmark calibration with
naive agents. Figure 38 repeats the exercise for portfolio allocations over the life-cycle.
Figure 39 shows that the beliefs do not differ to any considerable extent between naive
and sophisticated households which is due to the assumption that investors update their
beliefs independently of their participation decision. Figure 40 illustrates that while the
optimal risky share chosen by naive vs. sophisticated households can differ substantially,
these differences predominantly arise for high cash-at-hand levels and therefore have
small effects on the portfolio composition in the cross-section.
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Figure 37: Portfolio composition over the life-cycle. Benchmark calibration with participation
costs, naive vs. sophisticated households with subjective beliefs.
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Figure 38: Portfolio composition over the life-cycle. Benchmark calibration with participation
costs, naive vs. sophisticated households with subjective beliefs.
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Figure 39: Average beliefs about excess returns, naive vs. sophisticated households.
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Figure 40: Optimal risky share for naive (solid line) vs. sophisticated (dashed line) households,
shown for a household with the median persistent labor productivity. Impatient
households (type 1) in the left-hand column, patient households (type 2) to the right.
Colors denote different beliefs about excess returns.
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E Numerical solution

E.1 Household problem

Solving for optimal choices. I solve the household problem using a hybrid endoge-
nous grid point method (EGM). Plain EGM was originally proposed to solve the
consumption-savings problem without a portfolio choice, but can be extended to
portfolio-choice problems in a straightforward way by adding a root-finding step at each
exogenous savings level.

Root-finding needs to be performed on the first-order condition with respect to ξ, the
optimal risky share. For the case of EZW preferences, this portfolio Euler equation (P-EE)
is given by

πs
hEi

[
(V ′)−γV ′1

(
R′ − R f

) ]
+ (1− πs

h)Ei

[
((Vb)′)−γ(Vb

1 )
′ (R′ − R f

) ]
= 0

for the working-age household, where the continuation values are given by

V ′ ≡ Vjh+1
(
a′, p′, µ̂′i

)
(Vb)′ ≡ Vb

j
(
a′b
)

and their derivatives with respect to to the first argument (i.e. cash-at-hand) are denoted
as

V ′1 ≡
∂V ′jh+1 (a′, p′, µ̂′i)

∂a′

(Vb
1 )
′ ≡

∂Vb
j
(
a′b
)

∂a′b

Using the envelope condition, the P-EE can be stated as

πs
hEi

[
(V ′)ψ−γ(c′)−ψ

(
R′ − R f

) ]
+ (1− πs

h)φ
1−γ
1−ψ

j Ei

[ (
a′b
)−γ (R′ − R f

) ]
= 0 (18)

As in plain EGM, I solve for the optimal solution conditioning on an exogenously
imposed savings level b > 0 (the portfolio choice is indeterminate for b = 0, so the
boundary case can be ignored). Then (18) is an implicit function of ξ via the continuation
values, their derivatives and tomorrow’s consumption c′, which depend on the optimal
choice of ξ via its effect on a′ and a′b. It turns out that (18) is in general a monotonically
decreasing function of ξ, a fact that can be used to easily identify corner solutions as
well as interior portfolio choices. Once the optimal portfolio choice has been determined,
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one can compute the return on the total portfolio Rp,t+1 which enters the consumption-
savings Euler equation. The remaining steps are the same as in the standard EGM
procedure.

In the presence of fixed participation costs, EGM has the problem that the first-order
conditions are only necessary, but no longer sufficient. Intuitively, this is the case because
while the above hybrid method can be used to find an interior optimal solution condi-
tional on paying the participation cost, not saving in the risky asset and thus not incurring
the participation cost might still yield a higher utility. This potentially creates down-
ward jumps in the consumption policy function which plain EGM cannot deal with. I
implement the approach suggested in Iskhakov et al. (2017) and Druedahl and Jørgensen
(2017) to address this issue (the variant without taste shocks).

Exogenous grids. I discretize cash-at-hand and the exogenous savings grid in the usual
way, putting more points in the region where policy and value functions have more
curvature.

I approximate mean beliefs on an age-specific grid of 23 points as follows: I compute
the percentiles (P0, P1, P2.5, P7.5, . . . , P92.5, P97.5, P99, P100) of the cross-sectional
belief distribution for each age, and place grid points at the expected values con-
ditional on falling into the regions bracketed by these percentiles. Thus, the grid
points are automatically placed in regions where the beliefs for each cohort are concen-
trated.

The persistent earnings component is approximated using the Rouwenhorst procedure
with seven grid points. Transitory earning shock realizations are discretized to five
possible realizations.

E.2 Simulation

Following an approach commonly used in the literature (see, for example, Gomes
and Michaelides (2005)), I simulate the distribution of a “representative” cohort over
its entire life-cycle instead of rolling forward a cross-section of a limited number of
households.

The initial distribution of newborns is computed as follows:

1. Their initial wealth is assigned according to the distribution of wealth in the SCF
for the age group 20–25, discretized onto 500 bins.

2. The initial distribution over persistent labor productivity states is the ergodic distri-
bution implied by the Markov process obtained from the Rouwenhorst procedure.

3. Beliefs are drawn from the normal distribution that is assumed for newborns,
discretized onto the 23 grid points as outlined above.
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Using the households policy rules and the exogenous transition processes, I then build
a (sparse) transition matrix that transforms the distribution of households over exoge-
nous and endogenous states at age t into the corresponding distribution at age t + 1.
This process is repeated for all ages t = 0, . . . , T − 1. Since there are no endogenous
intergenerational linkages (such as bequests between a specific parent and descendant
household), the stationary distribution over all cohorts can then be obtained as a cohort-
size-weighted average of these age-specific distributions.
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