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1 Introduction

The determinants of the wealth distribution are of fundamental interest to economists.
Standard consumption/savings theory predicts that people who place a larger weight on
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future states will be wealthier than people who are more impatient, all else equal. This
paper explores one reason to put a higher weight on the future: the higher probability to
survive to old age.

However, an individual’s consumption/savings decision is not necessarily guided by
the objective (statistical) survival probability but rather the individual’s beliefs about sur-
vival. The first contribution of this paper is to document new facts about a within-cohort
steepness bias in survival beliefs: people overestimate the health gradient of survival.

It has previously been shown (e.g., Hamermesh 1985, Elder 2013, Ludwig and Zimper
2013, Heimer, Myrseth, and Schoenle 2019) that there is a systematic flatness bias
over age: younger people tend to underestimate their survival probabilities, while
older people overestimate their chances of a long life. We show that within a cohort,
individuals in bad health not only have a shorter expected life span but are also relatively
more downward biased about their survival chances, while individuals in good health
and thus with higher survival probability display an upward bias. These systematic
biases exacerbate the life expectancy heterogeneity in the population.

The differences in beliefs about survival translate into time preference heterogeneity
in the population. Our second contribution is to quantify this heterogeneity and its
implications for savings and wealth accumulation in an overlapping-generations model.
With a stochastic health and survival process, the effective discount rate varies depending
on age, health and the forecast horizon. Over a one-year horizon, the effective discount
rate for 50-year-olds ranges from 2% for an individual in best health to around 20% for
an individual in worst health. At a 10-year horizon, this gap shrinks somewhat but still
amounts to eight percentage points between best and worst health. For 70-year-olds in
worst vs. best health state, the difference at the 10-year horizon is close to ten percentage
points. This resulting time preference heterogeneity is in line with the dispersion (Calvet
et al. 2021) and the age gradient (Kureishi et al. 2021) of the time preference distribution
found in other empirical studies.

To gauge the quantitative effect of survival heterogeneity on savings behavior and
wealth accumulation, we use an overlapping-generations general-equilibrium model
with uninsurable idiosyncratic shocks. Agents face heterogeneous survival risk that
depends on their age and current health state, and are subject to health shocks that
follow a process estimated from data. The current health state also affects labor earnings
and medical expenditure risk. Besides this uncertainty, we additionally include standard
persistent and transitory shocks to labor productivity during working age. After agents
reach a fixed retirement age, they are entitled to retirement benefits mimicking the US
social security system. Finally, our model includes probabilistic bequests that feature
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intergenerational persistence of income and wealth. We purposely use an otherwise
standard model of consumption/savings to establish a benchmark and focus on the
survival heterogeneity savings channel.

We compare three scenarios. The first scenario is a standard model in which there is
no health risk: all agents face the same labor earnings risk, the same medical expendi-
ture risk, and the same survival risk and thus have the same effective discount factor,
conditional on age. In the second scenario, we introduce health risk that affects labor
earnings and medical expenditures. In terms of survival risk, individuals are perfectly
informed about their true survival probability conditional on health and age. In the third
scenario, agents believe and act according to their subjective survival beliefs. Thus, our
analysis is designed to answer the question: what if we turned off the discount factor
heterogeneity implied by the biases in survival beliefs we uncovered in the empirical
part? Would savings patterns look quantitatively different?

The simulations show that the survival expectation channel is important for under-
standing wealth accumulation. Not surprisingly, agents in bad health and thus with a
shorter expected life span save less than their healthy counterparts, and the differences
in savings rates are large. For example, for 60-year-olds in the middle of the wealth
distribution, the total savings rates of an agent in the best and an agent in the worst
health state differ by 5 percentage points when they are endowed with correct objective
beliefs about survival. When we let them act according to the estimated subjective beliefs
instead, the difference doubles to 10 percentage points.

These differences in savings behavior translate into large differences in accumulated
wealth: in the model with subjective survival beliefs, median wealth differs by 193%
between those in the worst and best health states at ages 55–59. This health-wealth
gradient is very close to the magnitude we observe in the data. A fifth of this difference
is driven by the erroneous survival beliefs, especially by individuals in poor health
underestimating their remaining life span. Thus, the biases in survival beliefs are
important to understand the health-wealth gradient in older ages.

This paper speaks to three broad strands of literature. The first is concerned with
subjective survival expectations (Hamermesh 1985; Smith, Taylor, and Sloan 2001; Hurd
and McGarry 2002; Ludwig and Zimper 2013; Elder 2013; Gan et al. 2015; Groneck,
Ludwig, and Zimper 2016; Heimer, Myrseth, and Schoenle 2019; Bresser 2023). Many
studies have documented the existence of an age bias in subjective life expectancies,
and a few of the papers within this group are concerned with the implications for the
consumption/savings behavior. Some predict individual survival probabilities and
contrast them with elicited beliefs (Gan, Hurd, and McFadden 2005; Bissonnette, Hurd,
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and Michaud 2017; Grevenbrock et al. 2021), but none of these look at the implications
for within-cohort savings behavior in a structural model where beliefs change in the
event of health shocks, or analyze the implications for wealth inequality.

The second strand are macroeconomic studies pointing out the importance of hetero-
geneity in time preferences to explain wealth inequality (e.g., Krusell and Smith Jr. 1998;
Hendricks 2007; Quadrini and Rı́os-Rull 2015; Krueger, Mitman, and Perri 2016) and
studies documenting time preference heterogeneity in the population (Epper et al. 2020;
Calvet et al. 2021). Compared to these papers, we provide a micro-foundation for one
source of time preference heterogeneity — differences in life expectancy — and evaluate
its importance.

The third is the literature about the general impact of health (including life expectancy)
on wealth (Smith 1999; Lee and Kim 2008; Coile and Milligan 2009; De Nardi, French,
and Jones 2009; Kopecky and Koreshkova 2014; Capatina 2015; De Nardi, Pashchenko,
and Porapakkarm 2017; Poterba, Venti, and Wise 2017; Margaris and Wallenius 2023,
to name a few). In contrast to these papers, we include heterogeneity in subjective life
expectancy and examine its impact on savings and consumption behavior.

In the next section, we describe how we estimate the health and survival process and
give details about the systematic bias in survival expectations. Section three describes the
model we use to quantify the importance of the heterogeneity in survival expectations.
After that, we discuss the parametrization and then we present our results. The last
section concludes.

2 Empirical evidence

2.1 Data

We use the Health and Retirement Study (HRS), a representative panel of elderly US
households, to investigate the evolution of health and longevity in the later stages of
life. The survey includes questions about self-reported health and expectations about
survival, and records the date of death, if applicable.

Our analysis is based on the survey years 1992–2014 taken from the HRS data compiled
by RAND, version 2018 (V2) (Health and Retirement Study (2023)).1 The first cohort
included in the survey was between 51 and 61 years old in 1992, and thereafter new
(older and younger) cohorts were added. Many of the respondents died over the sample
period, making it an ideal data set for studying survival.

1The HRS (Health and Retirement Study) is sponsored by the National Institute on Aging (grant number
NIA U01AG009740) and is conducted by the University of Michigan.
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In this section, we first document the relationship between health and wealth, and
between beliefs about survival and wealth. We then briefly describe how we estimate
the objective survival probabilities. In section 2.4 we show how average elicited beliefs
about survival are biased, and in section 2.5 we estimate a subjective life expectancy
process that replicates this bias.

2.2 The health-wealth gradient and the life expectancy/savings channel

The HRS asks participants to assess their health using one of the five categories excellent,
very good, good, fair, or poor. Figure 1 shows net total wealth over the life cycle by
self-reported health state computed for the pooled sample of all respondents.2,3 The
health-wealth gradient is well documented, but the underlying causal relationship is
debated (Attanasio and Hoynes 2000; Deaton 2002; Duncan et al. 2002; Attanasio and
Emmerson 2003; Hajat et al. 2010). One line of argument is that low economic status
leads to poor health. There could be many reasons: poor people have access to less or
lower-quality medical care, do not invest enough in preventive health measures, and/or
have more health-deteriorating habits. However, there are also many arguments for the
reversed causality: poor health has economic consequences in itself. First, poor health
may restrict the individual’s earnings potential by making it more costly to work and/or
by lowering the wage. Second, poor health may lead to large medical expenditures.
Third, poor health may lower the savings incentives due to a lower survival expectancy.
This last channel is the focus of this paper.

If individuals adjust their savings behavior based on their survival prospects, this
could be either on the basis of objective (statistical) survival probabilities or subjective
survival beliefs, which are also surveyed by the HRS. To assess how wealth correlates
with survival beliefs, we regress net total wealth on an indicator of whether an indi-
vidual believes to have above-median survival chances compared to other respondents
of the same age, race and sex. Table 1 shows a positive correlation between having
above-median beliefs and being wealthier.4 The positive relationship also holds when
additionally controlling for education and couple status.5 Other empirical studies cor-

2Net total wealth is defined as sum of housing, other real estate, vehicles, businesses, IRA and Keogh
accounts, stocks, checkings, and all other savings, net of mortgages and other debts.

3In online appendix section A.4, we disaggregate these wealth profiles by race, sex, household size and
education. The overall picture remains unchanged.

4All empirical results in this paper are reported with standard errors and confidence intervals that take
into account the stratification and clustering of the HRS, see online appendix section A.3.

5We apply an inverse hyperbolic sine transformation since assets are heavily skewed and contain zeros and
negative values. All coefficients of interest are positive and significant at the 1% level when alternatively
using assets in levels. Online appendix section A.5.1 contains further information and robustness checks.
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Figure 1: Median net total household wealth by self-reported health state. Pooled sample from
HRS 1992–2014. Assets are adjusted for outliers, time and cohort fixed effects. Colors
indicate the health state: dark green is excellent while red is poor health. Error bars
indicate 95% confidence intervals.

roborate the existence of the life expectancy/savings channel and suggest a causal link.
For instance, Heimer, Myrseth, and Schoenle (2019) administer a novel survey and
estimate that greater survival optimism correlates with higher savings rates, not only
after controlling for standard demographic characteristics such as education, marital
status, and income, but also financial literacy and risk tolerance.

Another prediction of the life expectancy/savings channel is that individuals who
receive a bad health shock, i.e., a plausible decrease in life expectancy, should exhibit
lower asset growth. Table 2 reports the results from regressing the two-year change in
net total wealth (again using an inverse hyperbolic sine transformation) on a negative
health shock defined as an indicator for a deterioration in self-reported health between
survey waves. As column 1 shows, men who experience a negative health shock
decumulate their assets more compared to men of the same race, age and initial health
who don’t. Column 2 additionally controls for education, while columns 3–4 show the
corresponding results for women. A negative health shock is associated with a faster
decumulation (or slower accumulation) of assets in all specifications. More details are
given in online appendix section A.5.2.6

While these results are indicative, a recent study by Kvaerner (2022) using the plausi-

6It is possible that the decumulation of assets associated with a health deterioration is driven by lower
labor income or large medical expenditures. In online appendix section A.5.2, we show that the results
also hold in the subsample aged 65 and older (who are likely to be retired and on Medicare) even after
accounting for out-of-pocket medical expenditures.
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Dep. variable: net total wealth (inverse hyperbolic sine transformation)

Men Women

(1) (2) (3) (4) (5) (6)

Above median SSB 0.413∗∗∗ 0.226∗∗∗ 0.218∗∗∗ 0.567∗∗∗ 0.368∗∗∗ 0.347∗∗∗

(0.045) (0.040) (0.039) (0.032) (0.029) (0.029)
Age FE Yes Yes Yes Yes Yes Yes
Education FE Yes Yes Yes Yes
Couple FE Yes Yes
Observations 54,212 54,212 54,212 70,537 70,537 70,537
Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1: Net total wealth and above-median subjective survival beliefs. The table shows the
results of regressing net total wealth (after an inverse hyperbolic sign transformation)
on an indicator of above-median survival beliefs compared to individuals of the same
age, race and sex. The regression includes fully interacted fixed effects as indicated.
Nonblack population.

bly exogenous timing of cancer diagnoses shows that news about a bad health shock
increases the probability of an immediate inter vivos transfer, suggesting a causal link be-
tween survival prospects and wealth decumulation. Thus, if a decrease in life expectancy
increases own consumption and/or increases the probability of inter vivos transfers
is an open question, and one interpretation of inter vivos transfers from the giver’s
perspective is to view them as “consumption of gift-giving.” While both inter vivos
transfers and own consumption show up as a decumulation of assets and thereby affect
the health-wealth gradient in older ages in the same way, they have different implications
for wealth among the younger receiving generation and thus for the wealth distribution.
Our structural model does not allow for inter-vivo transfers and consequently leaves
this question open for future research.

2.3 Objective health and survival probabilities

In this paper, we examine the effect of heterogeneity in survival expectancy on savings
behavior and its implications for wealth inequality through the lens of a structural model.
Therefore, we need to formulate heterogeneity in survival expectations, both objective
and subjective, in a way that can be used in such a model.

For our quantitative model, we use a Markov process for health transitions and
survival at an annual frequency. We estimate this Markov process as described in Foltyn
and Olsson (2021). Conceptually, the method is a straightforward maximum likelihood
estimator where the probability of observing the transitions in the data is maximized.
We briefly summarize the method and estimation sample in the next few paragraphs.

7



Dep. variable: relative change in net total wealth

Men Women

(1) (2) (3) (4)

Negative health shock -0.149∗∗∗ -0.130∗∗∗ -0.133∗∗∗ -0.114∗∗∗

(0.023) (0.024) (0.018) (0.019)
Age FE Yes Yes Yes Yes
Health FE Yes Yes Yes Yes
Education FE Yes Yes
Observations 61,528 61,528 80,615 80,615
Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Health shocks and changes in wealth. The table shows the results of regressing changes
in net total wealth (after an inverse hyperbolic sign transformation) on an indicator
for a deterioration in self-reported health between two consecutive survey waves. The
regression includes fully interacted fixed effects as indicated. Nonblack population.

To put structure on the Markov process, we follow Pijoan-Mas and Rı́os-Rull (2014)
and use a logit model, where survival and health transitions conditional on survival are
modeled as functions of the current health state and age. The probability of survival
follows the usual binary logit model while, conditional on survival, health transitions
are modeled using multinomial logit. For example, the one-period-ahead survival
probability is given by

ps
t+1 =

1
1 + e−g(xt|γ)

(1)

where g(•) is a function of the covariate vector xt which contains race, sex, age, health
and and potentially other observables such as education. Survival probabilities are
governed by the parameter vector γ to be estimated. Transition probabilities for health
conditional on survival are defined in an analogous manner.7

Estimation sample. We exclude all observations with missing age, race, sex or self-
reported health, as well as individuals with only a single observation (since then we do
not have any transition probability to estimate). We only consider individuals aged 50
or older.8 Furthermore, we restrict the sample to maximum age of 99 years at transition
start (even though individuals can be older when we observe them in the end of a
transition). This leaves us with 34,196 individuals and 219,539 observations in total.

7In Foltyn and Olsson (2021), we provide details about the estimation and also perform an extensive
evaluation of the results. The estimated Markov process is shown to predict actual mortality very well,
both short- and long-term. See online appendix section B for a brief overview.

8Each incoming HRS cohort is aged 51 or above, but the survey contains younger individuals who are
spouses of age-eligible respondents.
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We estimate the health and objective (statistical) survival process separately for the
subsamples of men/women and the black/nonblack population, since it is well known
that the life expectancies for these groups follow very different trajectories.9 Table B.1
in the online appendix shows descriptive statistics and the number of individuals and
observations by subgroup.

Results. From these estimates, we construct a first-order Markov process defined on
five health states and the absorbing state of death which governs the objective health and
survival probabilities. This process can be used to calculate objective life expectancies
conditional on age, health, race, and sex. Not surprisingly, there is a substantial health
gradient in life expectancy. For example, for a 70-year old nonblack men in excellent
health, the predicted probability of surviving an additional 10 years is approximately
75%, while the probability is just around 35% if instead starting out in poor health. For a
brief overview of the results, see online appendix section B.2.

It is important to note that even though the health and survival process is based on
self-reported health — a subjective measure of how respondents perceive their health
state — the result from the estimation is an objective statistical life expectancy for each
combination of race, sex, age, and health. Self-reported health can be thought of as letting
the respondents themselves aggregate the multidimensional information about their
health (that is potentially unobservable to the econometrician) into a single categorical
variable, and the variable can also capture subjective perceptions of the respondent. The
estimated Markov process maximizes the probability of observing the health transitions
and survival in the data conditional on self-reported health, irrespective of why a
particular health state was reported.

2.4 Expectation errors in survival probabilities

In the expectations survey module of the HRS, respondents are asked about the proba-
bility they assign to certain events. One of these questions is about the probability of
surviving to a certain age, for example: “Using a number from 0 to 100, what do you
think are the chances that you will live to be at least 100 years?”10

9For the remainder of the paper, the “black” sample consists of respondents who identify as black or
African-American, while “nonblack” is the complementary group which also includes Hispanics. The
HRS is not large enough to disaggregate the nonblack group further, since the (unweighted) sample of
person-year observations is approximately 72.7% white, 15.7% black/African-American, 9.4% Hispanic,
with other ethnicities together contributing the remaining 2.3%.

10Before the respondent answers the questions about expectations, the interviewer discusses probabilities
and verifies that the respondent understands the concept.
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All Nonblack Black

Male Female Male Female

Sample size
N. of individuals 32,590 12,073 14,884 2,274 3,359
N. of observations 252,299 92,013 120,481 14,914 24,891
Avg. observations/indiv. 7.7 7.6 8.1 6.6 7.4

Forecast horizon (years)
Min. 10.0 10.0 10.0 10.0 10.0
Mean 19.4 19.5 19.2 20.2 19.8
Max. 39.0 35.0 39.0 35.0 35.0

Target age distribution
Age 75 37.2% 37.7% 36.3% 41.0% 39.5%
Age 80 16.3% 16.3% 16.4% 15.3% 16.1%
Age 85 35.1% 35.6% 34.4% 37.1% 36.2%
Age 90 5.6% 5.3% 6.1% 3.7% 4.3%
Age 95 3.9% 3.5% 4.5% 2.0% 2.6%
Age 100 2.0% 1.7% 2.4% 0.9% 1.3%

Table 3: Descriptive statistics for elicited subjective survival beliefs. Mean forecast horizon and
distribution over target ages are weighted using HRS sample weights.

The exact target age depends on the respondent’s age and survey wave. For instance,
in 1995, respondents below the age of 70 were asked about the probability of living until
the age of 80, while respondents above the age of 85 were asked about the target age of
100. In later surveys, individuals were asked about survival beliefs for up to two target
ages.

Table 3 shows the number of individuals and observations (an observation being one
elicited survival belief) by subgroup. The tabulated distribution of target ages shows
that the questions about survival to age 75 or 85 are by far the most common, hence we
focus on these two in the main text.

Using these elicited beliefs, we compare the average probability that individuals of
a certain age assign to survival until a given target age to the probability according
to official life tables. As can be seen in Figure 2, there is a systematic error along
the age gradient: younger individuals on average tend to underestimate, while older
individuals tend to overestimate their survival probability as compared to objective life
table estimates.11

This age-dependent error is a stylized fact in the literature on survival expectations

11A potential concern is that the sample of individuals answering the subjective beliefs question is not
representative, and thus any differences between subjective beliefs and life tables arise due to selection.
In online appendix section C.1, we show that the same pattern emerges if we instead compare subjective
beliefs to objective survival probabilities estimated on the same sample.
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Figure 2: Objective vs. subjective survival probabilities by age and sex (controlling for year and
cohort fixed effects). The number next to the black line indicates target age. The blue
line shows (weighted) average expectation in the nonblack population. Shaded areas
indicate 95% confidence intervals.. Only age bins with at least 50 observations are
shown.

(see, e.g., Ludwig and Zimper (2013), Groneck, Ludwig, and Zimper (2016), and Heimer,
Myrseth, and Schoenle (2019) and the references therein). The pattern has been used to,
e.g., improve the fit of the asset profile of the canonical life cycle model with the data:
due to underestimation early in life, young agents do not accumulate as much wealth,
while overestimation in later years dampens the rate at which assets are decumulated.

Since our estimator conditions on health, race and sex, we can go one step further
and document survival belief differences along these dimensions. Figure 3 shows these
expectation errors among respondents who have answered the question about their
perceived probability of survival until target ages 75 and 85. The first observation is
the striking positive correlation between subjective self-reported survival probability
and the predicted (objective) survival probability, which means that subjective beliefs
are informative. This is in line with the consensus in the literature, which finds that
subjective beliefs are highly correlated with objective survival probabilities and serve as
predictors of mortality, and that expectations are updated in the event of health shocks
(Smith, Taylor, and Sloan 2001; Hurd and McGarry 2002; Gan, Hurd, and McFadden
2005).

The second observation is the systematic steepness bias in beliefs over the health gra-
dient. As was shown in Figure 2, on average individuals underestimate their probability
of survival until the age of 75. Looking at Figure 3(a), and focusing on nonblack males, it
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Figure 3: Elicited beliefs about survival vs. estimated objective (statistical) survival probabilities.
Each bubble represents the average for a race/sex/age/health group. The x-axis
shows the model-predicted (objective) survival probability, the y-axis the average self-
reported survival probability for that group. Colors indicate the health state: dark green
is excellent while red is poor health. The size indicates the number of observations in
each cell. We exclude cells with less than 20 observations.
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is clear that it is mainly individuals in bad health who are underestimating their survival
probability, while individuals in excellent health are on average reasonably close to their
objective survival probability.

Figure 3(b) shows expectation errors for target age 85. Again, individuals in bad health
underestimate their survival probability more than those in good health, even though
on average the expectations are more upward biased for this target age. Figure C.2 in
the appendix shows the corresponding graphs for target age 95. The figure illustrates
that for those higher ages individuals in bad health have beliefs closer to their objective
probability, while individuals in good or excellent health are severely overestimating
their survival chances. In online appendix section C.3, we additionally disaggregate the
expectation errors by education. The overall picture remains unchanged.

Next, we impose some structure on the biased survival beliefs documented in these
scatter plots. To this end, we define survival bias as the elicited subjective survival
belief minus the objective survival probability (thus an underestimation of the survival
probability is negative bias). For example, for some target age j we define the bias as

∆ijgt ≡ pj
subj,ijgt − Pr ( alive at j | g, hit, ageit )

for individual i in demographic group g (nonblack/male, nonblack/female, black/male,
or black/female) when the individual is in health state hit. We first quantify the bias
observed over the life cycle by estimating the regression

∆ijgt = β0jg + β1jg · ageit + β2jg · age2
it + ε ijt

for each target age separately, where we allow the coefficients of the age polynomial
to vary by race and sex. In Figure 4, we plot the predicted survival bias for each age
and race/sex group for the target ages 75 and 85. As the figure shows, men and black
individuals are on average more upward biased than women and nonblack individuals.
This confirms the findings by Bissonnette, Hurd, and Michaud (2017).

In a second step, we disaggregate the bias by initial health. We estimate the following
regression separately for each demographic group,

∆ijght = β0jgh + β1jgh · ageit + β2jgh · age2
it + ε ijt

where we interact the initial health state h with a quadratic polynomial in age. The
predicted values for this exercise for target ages j ∈ {75, 85} are shown in Figure 5 for
the nonblack population: individuals in bad health generally display a more negative
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Figure 4: Survival bias by race, sex and age. Positive bias indicates that the group is overestimat-
ing their survival probability. Error bars indicate 95% confidence intervals.

bias than individuals in better health.12

In a related paper, Grevenbrock et al. (2021) estimate survival based on several addi-
tional characteristics besides self-reported health, age, and sex, such as smoking and
drinking behavior, and chronic diseases. Grouping individuals based on their estimated
objective survival probability, they find that individuals with low objective survival
probability in general overestimate, while individuals with high objective probability
underestimate their survival probabilities, in other words, at a first glance the reverse
pattern compared to what we find. However, there are two reasons for why our results
are not directly comparable. First, they use a different estimation strategy for objec-
tive survival probabilities. Second, and more important, the grouping of individuals
is different. We group based on age, sex, race and self-reported health, which is the
level of heterogeneity in our economic model (and thus, for our purposes, the most
appropriate one) and show that, conditional on age, sex and race, individuals with lower
survival probabilities (poorer health) tend to under-predict their survival. Conversely,
Grevenbrock et al. (2021) show that, when considering differences in survival due to
age or permanent characteristics such as sex or race, groups with lower survival rates
tend to over-predict their survival. For a more comprehensive discussion, see online
appendix section C.5.

More generally, the finding that individuals with high life expectancy display an
upward bias in their survival beliefs is in line with evidence about forecast errors in
other domains. For example, Rozsypal and Schlafmann (2023) document that people in

12Figure C.6 in the online appendix shows the corresponding results for the black population. The pattern
is the same, but standard errors are larger due to smaller sample size.
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Figure 5: Survival bias by sex, age and self-reported health for the nonblack population. Positive
bias indicates that the group is overestimating their survival probability. Colors indicate
the health state: dark green is excellent while red is poor health. Error bars indicate
95% confidence intervals.

the upper part of the income distribution overestimate their future income growth while
the opposite is true for lower-income households.

To summarize, we stress two observations: first, subjective beliefs are informative and
correlated with objective probabilities. Second, subjective beliefs are biased. Subjective
probabilities overestimate the health/survival gradient, with individuals in bad health
underestimating their survival probability relative to individuals in good health. Hence,
there is a systematic bias both along the age and health dimensions.

2.5 Estimation of the subjective life expectancy process

In this section, we use the health transitions estimated in Foltyn and Olsson (2021) as a
basis for estimating a different set of parameters that govern subjective survival beliefs.
The difference between objective probabilities and subjective beliefs could arise due
to erroneous beliefs about survival conditional on health, erroneous beliefs about the
health process, or a combination of the two. Without further information we cannot
distinguish between those alternatives, and the HRS does not elicit any beliefs about
future health states. To keep the model reasonably parsimonious, we take as given the
parameters controlling health-to-health transitions conditional on survival and estimate
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a different set of survival probabilities to capture the elicited beliefs.
We take an agnostic approach as to why the erroneous beliefs arise. In the literature,

various mechanisms have been proposed, such as Choquet Bayesian learning models
of survival beliefs which allow for likelihood insensitivity (Ludwig and Zimper 2013;
Groneck, Ludwig, and Zimper 2016) and, closely related, age dependent cognitive
weakness and relative optimism (Grevenbrock et al. 2021) as well as overweighting the
likelihood of rare events (Heimer, Myrseth, and Schoenle 2019).

As explained above, the underlying data for this exercise takes the following form:
HRS respondents are asked at date t to state their beliefs about surviving to a certain
target age j (for example 75 or 85), which we reinterpret as the probability of being alive
in Tijt periods, with Tijt = j− ageit. We treat multiple observations from one individual
independently: say a respondent i is surveyed on survival beliefs to target ages j1 and j2
in calendar years t1 and t2. This gives rise to the data

(
xit1 , pij1t1 , Tij1t1

)
,
(
xit1 , pij2t1 , Tij2t1

)(
xit2 , pij1t2 , Tij1t2

)
,
(
xit2 , pij2t2 , Tij2t2

)
where xit are vectors of covariates including race, sex, age, health and possibly other
observables, and pijt are elicited survival beliefs. We treat these as four independent
observations, except when bootstrapping confidence intervals which we cluster as
described in online appendix section A.3.

Assume that the i-th individual forms T-year-ahead survival beliefs based on the
model

ps
it = ϕT (xit) (2)

where ϕT is an unknown nonlinear function that maps x into [0, 1].
In what follows, we partition the sample into groups indexed by k, such that each

unique combination of (x, T) forms a separate group. Denote by Γk all individual/target
age/year observations that satisfy

Γk =
{
(i, j, t)

∣∣∣ xit = xk, Tijt = Tk

}
i.e., all observations where the individuals are asked about their survival beliefs over
the same horizon, are of the same age, report the same health state and share any other
covariates in xit. Denote by ps

k the (weighted) sample average of reported survival beliefs
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conditional on (xk, Tk), i.e.,

ps
k =

∑(i,j,t)∈Γk
wit · ϕTk (xk, zit)

∑(i,k,t)∈Γk
wit

(3)

where wit are the respondent-level sampling weights.
Now consider the logit counterpart of (3), which we denote by

p̂s
k = Pr

(
alive at agek + Tk

∣∣∣ xk, ν
)

i.e., the predicted probability of being alive for group k, taking into account all possible
health transitions to Tk. We assume exactly the same functional form as for the objective
health and survival process, but allow the parameter vector ν governing survival to
differ.

The observed sample moment for each group can then be written as

ps
k = p̂s

k + uk

where uk is the deviation from the group mean not explained by our model. Our aim is
to minimize these group-specific residuals using the least-squares objective function

J(ν) =
1

W ∑
k

Wk

[
ps

k − p̂s ( xk, Tk | ν)
]2

(4)

where Wk = ∑(i,j,t)∈Γk
wit is the sum of weights in group k. The estimated vector ν̂ is

hence the arg min of J(ν).

Estimation sample. We use all target ages from Table 3 for the estimation of the
subjective life expectancy process. In the main paper, we present the results for nonblack
men, as these are later incorporated into our quantitative model.

Results. The estimated subjective survival beliefs for nonblack men are shown in pink
in Figure 6, juxtaposing the objective survival probabilities estimated in Foltyn and
Olsson (2021) in blue. As can be seen, the subjective belief about survival in health state
excellent or very good is almost 100% for all ages. This does not mean that individuals in
those health states believe that they will live forever, rather that they believe that death
is necessarily preceded by a deterioration in health.

Figure 7 summarizes the results, showing the life expectancy by age and health state
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Figure 6: One-year objective and subjective survival probabilities by health state for nonblack
men (model estimates). Shaded areas indicate 95% confidence intervals. For each
bootstrapped sample we re-estimate the objective health process.

using the objective and the subjective survival process. At all ages, the difference in life
expectancy between the best and the worst health state is larger when using subjective
life expectancies. The divergence between objective and subjective life expectancies is
particularly large for men in bad health, who substantially underestimate survival at
younger ages. Conversely, individuals in all health states overestimate their chances of
survival late in life. Figure C.8 in the appendix plots the objective and subjective life
expectancy for the remaining demographic groups, which exhibit very similar patterns.

Figure C.9 in the online appendix plots the model-predicted subjective survival prob-
abilities against their data counterparts, showing that both sets of moments are well
aligned.

3 Economic model

In this section, we describe the overlapping-generations model used to quantify the
implications of survival heterogeneity. Time is discrete and each period corresponds to
one year. Agents derive utility from consumption and face idiosyncratic risk in the form
of shocks to their labor income, medical expenditures, health and survival, as well as
stochastic bequests from their parents. Markets are incomplete as agents can only save
in a riskless asset while borrowing is not permitted.
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Figure 7: Life expectancy by age and health for nonblack men. Colors indicate the health state:
dark green is excellent while red is poor health. On the left, the black line depicts the
weighted population average. Shaded areas indicate 95% confidence intervals.

3.1 The agent’s problem

There is a unit mass of individuals distributed across Nt cohorts according to the ergodic
distribution implied by the transition matrix of survival probabilities. An individual of
age t ∈ {1, . . . , Nt} and health h ∈ {1, . . . , 5} has a one-period survival probability to
age t + 1 given by πs

ht, with πs
ht = 0 in the terminal period.13

Individuals are assumed to be working for the first Tr − 1 years of their life and
exogenously retire in the period in which they attain age Tr. While working, they are hit
by persistent and transitory labor productivity shocks. During retirement, individuals
receive social security retirement benefits which depend on their last persistent labor
productivity in working age.

Bequests are modelled via probabilistic intergenerational links along the lines of Straub
(2019) so that children with higher lifetime income are more likely to have income-rich
parents and thus expect to receive higher bequests.

Retirement. Let x = (a, p, h, η, 1b, t) be a retired individual’s state vector, where a is
cash-at-hand, p represents pre-retirement labor productivity, h is the current health state,
η is the persistent component of medical expenditures, 1b is a bequest indicator, and t is
age. In each period, an individual chooses consumption c and savings k to be invested
in risk-free productive capital. Individuals earn a gross return R on their savings and
receive gross retirement income w · yr which is proportional to the economy-wide wage

13Since the model does not use calendar time, we from now on use t to denote age.
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rate w, and where
yr = ωr · Rss(p)

is a function of the average earnings profile at the time of retirement, ωr, and Rss(•)
which mimics the regressive replacement rate of the US social security system applied
to the last pre-retirement labor productivity p. Retirement income is taxed using the
nonlinear tax schedule Ty (•) so that after-tax retirement income amounts to

ι = w yr − Ty (w yr) . (5)

Agents receive an inheritance b∗ ≥ 0 at most once in their life, which we track using
the indicator 1b. They are born in state 1b = 1 and transition to 1b = 0 when their parents
die. As long as 1b = 1, the tuple (b∗, 1b) evolves according to

(
b′∗, 1′b

)
∼


(
b∗(p, h, t), 0

)
with prob.

(
1− πs

t∗

)
πb

pht

(0, 0) with prob.
(
1− πs

t∗

) (
1− πb

pht

)
(0, 1) with prob. πs

t∗

(6)

Once 1b = 0, no additional bequests are expected and (b′∗, 1′b) = (0, 0) obtains with
certainty. It is not possible to directly model intergenerational links between a parent
and a child as this would double the number of state variables. We therefore assume that
parents are exactly 30 years older (with age t∗ = t + 30) and survive with the age-specific
population-average probability πs

t∗ to the next period. Conditional on parental death,
children receive bequests with probability πb

pht ∈ (0, 1) to reflect that many parents
do not leave sizeable estates. To capture the intergenerational persistence of income
and wealth, we map agents into income quintiles and use the intergenerational income
quintile transition matrix from Chetty et al. (2014) to stochastically connect children to
potential parents. This creates a positive sorting between children’s and parents’ income
and wealth so that richer children are more likely to receive higher bequests. Since our
mapping to income quintiles relies on the states (p, h, t), both the probability to receive
a bequest πb

pht and the amount received b∗ are functions of (p, h, t). We describe the
technical details of these linkages in section D.1 in the online appendix.

The next-period cash-at-hand is given by

a′ = Rk + b′∗ + ι′ −m
(
h′, η′, ν′, t + 1

)
+ ξ′ (7)

where m are out-of-pocket medical expenditures that accrue between ages t and t + 1
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which are allowed to depend on health h, a persistent component η and a transitory
shock ν, similar to the approach taken in De Nardi, French, and Jones (2010).

Because these expenditure shocks can be quite large, we assume that the government
guarantees a minimum consumption level c by making a transfer ξ whenever agents
do not have the resources to cover the medical expenditures themselves. The required
transfer is therefore defined as

ξ′ = max
{

0, c + m
(
h′, η′, ν′, t + 1

)
− Rk− b′∗ − ι′

}
. (8)

In the process, whenever agents receive a positive transfer ξ > 0, they are not permitted
to save for the next period and therefore choose k = 0 and c = c.

Non-survivors leave their asset holdings as bequests to their offspring. Any out-of-
pocket medical bills m (η′, ν′, t + 1) incurred in the last period of life are deducted, and
bequests are additionally subject to the estate tax Tb (•). Thus after-tax bequests are
given by

b′ = max
{

0, Rk + b′∗ −m
(
η′, ν′, t + 1

)}
− Tb

(
max

{
0, Rk + b′∗ −m

(
η′, ν′, t + 1

)})
(9)

where we assume that descendants are not liable for any medical bills exceeding a
deceased individual’s assets.14

Finally, we impose a warm-glow bequest motive as in De Nardi (2004),

Vb (b) = ϕ1
(b + ϕ2)1−σ − 1

1− σ

where ϕ1 governs the weight individuals assign to leaving bequest and ϕ2 is a parameter
controlling to what extent bequests are a luxury good.

To summarize, a retired individual’s maximization problem is defined by the value
function

Vr (a, p, h, η, 1b, t) = max
c≥0, k≥0

{
c1−σ − 1

1− σ
+ βπs

htE
[

Vr
(
x′
) ∣∣∣ p, h, η, 1b, t

]
+ β

(
1− πs

ht
)
E
[

Vb
(
b′
) ∣∣∣ h, η, 1b, t

]}
subject to c + k ≤ a and the laws of motion (7) and (9), where x′ =

(
a′, p, h′, η′, 1′b, t + 1

)
is the continuation state conditional on survival. Health h evolves according to the

14As (9) suggests, it is possible that children die in the same period as their parents so that an inheritance
immediately becomes part of a child’s estate.
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transitions estimated from the HRS, while the survival probabilities πs
ht follow either

the objective or subjective survival beliefs discussed in the previous section. Lastly, the
persistent component η of medical expenditures follows an AR(1) process.

Working age. Individuals of working age solve a problem almost identical to that of
retirees, except that they additionally face both persistent and transitory labor earnings
risk. The persistent risk component is captured by the state variable p and is assumed
to follow a first-order Markov process, while the transitory shock ϵ is i.i.d. over time.
Together with the age-health earnings profile ωht they pin down an individual’s labor
productivity y which is allowed to depend on health h,

y = ωht p ϵ . (10)

Moreover, workers are subject to payroll taxes Tss (•) which we model as a function of
productivity, so that their after-tax labor income is

ι =
[
y− Tss (y)

]
w− Ty

([
y− Tss (y)

]
w
)

. (11)

The remaining problem is the same as for retirees, including the medical expenditure
shocks, the consumption floor, government transfers, and the intergenerational linkages
and bequests.

3.2 Technology

The production side of the model is standard. Competitive firms employ labor and
capital hired from households to produce a homogeneous final good which is used for
both consumption and investment. The aggregate production function is assumed to be
Cobb-Douglas, F(A, K, L) = AKαk L1−αk . Capital depreciates at the rate δk.

3.3 Government

We assume that the government runs a PAYGO social security system that has to balance
in each period, and that transfers as well as any remaining (wasteful) government
expenditures have to be fully financed by income and inheritance taxes. We first describe
the social security system and thereafter the general government budget.

22



3.3.1 Social security system

We use a stylized version of the actual retirement income formula used in the US Social
Security system. It captures the main features, such as a regressive replacement rate
based on pre-retirement income and a cap for maximum benefits. In the model, we
define retirement benefits to be a product of the economy-wide wage w, the average life
cycle profile component from the last year before retiring ωr, and a function that mimics
the regressive replacement rate,

ι(p) = w · yr(p) = w ·ωr · Rss(p) .

The replacement functionRss(•) is given by

Rss(p) =


ρ1 p if p ≤ p∗1
ρ1 p∗1 + ρ2 (p− p∗1) if p∗1 < p ≤ p∗2
ρ1 p∗1 + ρ2 (p∗2 − p∗1) + ρ3

(
min

{
p∗max, p

}
− p∗2

)
else

where p∗1 and p∗2 are bend points and p∗max is the contribution and benefit base (CBB)
in the Social Security income formula, expressed in terms of the individual’s last pre-
retirement persistent labor state p which becomes permanent once retired. Online
appendix section D.2.1 describes in detail how we map the dollar quantities taken from
Social Security regulations to their model counterparts.

The government expenditures on retirement are financed by a payroll tax. The payroll
tax function is defined as

Tss (y) = τss ·min{ymax, y}

where ymax represents maximum taxable earnings. The derivation of total payroll taxes
raised in each period can be found in online appendix section D.2.2. To balance the social
security system, we find τss such that total expenditures on Social Security benefits equal
total payroll taxes.

3.3.2 Government budget

The government needs to finance lump-sum transfers ξ to households defined in (8). We
denote the aggregate transfers by Ξ and provide details on how these are computed in
online appendix section D.3.1. Additionally, the government finances non-discretionary
expenditures that amount to a constant fraction g of output, G = gY.

We adopt the same income tax function as in Heathcote, Storesletten, and Violante
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(2017), which is defined as
Ty(ι) = ι− λι1−τ (12)

where ι is either earnings (net of payroll taxes) or retirement income, and we denote total
income tax revenue by Tinc. Additionally, the government collects Testate in estate taxes.
We provide details on how to compute Testate and Tinc in online appendix section D.3.2
and section D.3.3.

We assume that the progressivity parameter τ in (12) is fixed, and we pin down λ such
that the government budget is balanced in each period, i.e., Ξ + G = Testate + Tinc(λ).

3.4 Equilibrium

The equilibrium definition is mostly standard and can be found in online appendix
section D.4. The one noteworthy addition is that we require that for each cohort, after-
tax estates left by parents are consistent with the bequests expected and received by
children given the stochastic intergenerational links. This introduces computational
complications which we discuss in online appendix section H.

4 Calibration

4.1 Preferences

We assume log preferences, i.e., σ = 1 and thus u(c) = log c. The common discount
factor β = 0.979 is set to obtain a capital-to-output ratio of 3.0 in the scenario with
subjective survival beliefs. In our benchmark calibration we shut down the warm-glow
bequest motive by setting ϕ1 = 0, and hence all bequests are accidental. We discuss
alternative scenarios in section 5.4.

4.2 Externally calibrated parameters

Demographics. Agents are assumed to enter the economy at age 20, which corresponds
to model age 1, and retire at the age of 65, implying that Tr = 46. The maximum
attainable age is 109, and hence we let Nt = 90.15

15The reason for imposing such a high maximum age is that otherwise the scope for upward bias in beliefs
about survival in old age is limited: if agents know for sure that they are going to die at the age of 100,
say, any gap between objective and subjective beliefs shrinks by construction, even at younger ages.
However, setting a high maximum age has no effect on the age distribution: as shown in Figure E.2, the
mass of individuals aged 100+ in the economy is only 0.06%.
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Earnings. We assume that the logarithm of labor earnings follows a process with
transitory and persistent shocks,

log yht = log ωht + log pt + log ϵt t ∈ {1, . . . , Tr − 1}

where ωht is the age-health profile, pt is the persistent component and ϵt is the transitory
component of earnings. The persistent component is assumed to follow an AR(1) process,

log pt = ρp log pt−1 + υt

with autocorrelation ρp and innovation υt
iid∼ N (0, σ2

υ). The transitory shock is log-
normally distributed with log ϵt

iid∼ N (0, σ2
ϵ ). The stochastic part of the wage process is

therefore characterized by the parameters (ρp, σ2
υ , σ2

ϵ ) which we set to (0.9695, 0.0384, 0.0522),
following Krueger, Mitman, and Perri (2016). We use the Rouwenhorst procedure to
discretize the persistent part of the process into an five-state Markov chain, and we
discretize the transitory shock into three states.

The age-health profile for labor earnings is estimated for nonblack men aged 20 to 65
using PSID data. Not surprisingly, there is a strong health gradient. This is partly driven
by lower wages conditional on working, and partly by a larger fraction of individuals
in bad health not working at all. Since we abstract from the labor supply decision, our
estimates of the age-health earnings profile captures both margins. More details can be
found in online appendix section E.3.

Medical expenditures. Following French and Jones (2004) and De Nardi, French,
and Jones (2010), we estimate the medical expenditure shocks from the out-of-pocket
medical expenses reported at biennial frequency in the HRS for the sample of nonblack
men aged 50 and above. Since the HRS includes hardly any individuals below the age
of 50, we assume that agents do not face any out-of-pocket medical costs at these ages.

We impose that both the mean and variance of log medical expenditures are state-
dependent and given by the following process:

log mit = αi + x′itβ + z′itγ + σ(xit) (ηit + νit)

ηit = ρmηit−1 + ζit (13)

ζit
iid∼ N (0, σ2

ζ )

νit
iid∼ N (0, σ2

ν ) (14)
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The vector xit contains a third-order polynomial in age, health, as well as health inter-
acted with age. Additionally, zit includes controls not present in the economic model
such as marital status, education level, 5-year cohort dummies, and time fixed effects,
as well as interactions of these terms. We run a fixed effects estimator on the level
of log medical expenditures and recover the parameters governing the variances and
covariances from the residuals using GMM. Once we have identified the parameters
for medical expenditures over a two-year period, we use a simulated method of mo-
ments procedure to recover the implied parameters at annual frequency which yields
ρm = 0.920, σ2

ζ = 0.084 and σ2
ν = 0.457. More details can be found in the online appendix

section E.4.
For the purpose of including medical expenditure shocks in the OLG model, we

discretize the persistent component (13) using the Rouwenhorst procedure with seven
states, and we discretize the transitory component (14) into five possible realizations.

Bequests. We assume that estates are tax exempt up to the amount χb and subject to a
proportional tax τb thereafter. We set χb = 19.75 so that in equilibrium 2% of estates are
subject to estate taxes, while τb is set to 30%.16 The intergenerational income quintile
transition matrix used to link parents to children is taken from Chetty et al. (2014, Table
II) and reproduced in Table D.1 in the online appendix. Lastly, we allow the probability
to receive a bequest conditional on parental death to differ by income quintile. To this
end, we use the Survey of Consumer Finances (SCF) waves 1998–2007 and compute
the fraction of respondents aged 60–70 who report having ever received an inheritance
by each income quintile, which gives the probabilities 20.5%, 25.2%, 27.4%, 33.3% and
40.4% for the lowest to highest quintile.

Remaining externally calibrated parameters. The remaining parameters are listed
in Table 4. The bend points and the contribution and benefit base are reported in US
dollars to facilitate the interpretation. The value for the consumption floor is similar to
the levels used by De Nardi, French, and Jones (2010) or Palumbo (1999).

4.3 Health and survival process

We use the processes for health transitions and survival probabilities described in sec-
tion 2.3 (health transitions and objective survival probabilities) and section 2.5 (subjective
survival probabilities) for nonblack men. Agents enter the model at the age of 20, but

16The top marginal tax rate in 2023 was 40% (see https://www.irs.gov/pub/irs-pdf/i706.pdf); however,
not all taxable estates fall into the top category. We choose 30% as an approximation.
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Parameter Description Value Source

Production technology parameters
αk Capital share 36% Krueger, Mitman, and Perri (2016)
δk Depreciation rate 9.6% Krueger, Mitman, and Perri (2016)
A Total factor productivity 0.896 Fixes equilibrium wages at unity

Social security
ρ1 Replacement rate bracket 1 90% 2000 SS rules
ρ2 Replacement rate bracket 2 32% 2000 SS rules
ρ3 Replacement rate bracket 3 15% 2000 SS rules
b$

1 Bendpoint 1 $6,384 2000 SS rules
b$

2 Bendpoint 2 $38,424 2000 SS rules
e$

max Contribution and benefit base (CBB) $76,200 2000 SS rules
c Consumption floor $2,325 5% of average annual earnings

Government budget
g Gov. spending (share of GDP) 6% Brinca et al. 2016
τ Tax progressivity 0.137 Brinca et al. 2016
τb Marginal tax on estates 30% Authors’ approximation

Table 4: Calibrated parameters

the health and survival processes we estimate based on the HRS data starts at the age
of 50. We therefore estimate a health process for the ages 20 to 50 using PSID data. We
use data from the years 1984 to 2019 and the subsample of nonblack male household
heads, and assume that survival is certain during this age span (further details can be
found in the online appendix section E.1). From the age of 50, we use our estimated
process based on the HRS data, and agents start facing a positive probability of death.
The resulting cohort sizes and distribution of health states are shown in Figure E.2 in the
online appendix.

While the model is solved with five health states, in what follows we report results
only for the best, middle and worst health states to reduce visual clutter.

5 Results

We solve the model under three distinct assumptions about health heterogeneity and
survival expectations:

1. No health heterogeneity (NHH): In this scenario, all agents of the same age face the
same earnings profile, the same medical expenditure risk and the same survival
risk. We eliminate health heterogeneity and use the average survival rates (de-
picted by the black line in Figure 7(a)), an average earnings profile, and the average
medical expenditure process. The probability of receiving an inheritance and the
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amount received are also averaged across health.17

2. Objective survival heterogeneity (OSH): In the second scenario, we use the objective
process for health transitions and survival probabilities described in section 2.3. In
this case, individuals are perfectly informed about their true survival probability
conditional on health and age. Medical expenditures and labor earnings are
allowed to differ by age and health.

3. Subjective survival heterogeneity (SSH): In the third scenario, agents conversely form
beliefs and act according to the subjective survival process estimated in section 2.5.
However, this subjective process does not correspond to the true survival process,
which we use when simulating the model.

In the remainder of this section, we first contrast the effective discount rates that arise
in the objective vs. subjective survival belief scenarios. These are important drivers of
savings behavior, which we discuss next. We then turn to the implications for wealth
accumulation across health. Lastly, we briefly discuss general equilibrium effects, which
are mostly unchanged across all three scenarios.

5.1 Effective discount rates

An individual’s effective discount rate (determined by the common discount factor β

and the survival probabilities) in the model is time-varying and depends on the horizon.
Following a bad health shock, the discount rate immediately rises since it implies a
shorter expected life span, while the opposite happens in the event of a good health
shock.

The fact that the effective discount rate depends on the whole sequence of future
age- and health-dependent transition and survival probabilities makes it difficult to
compare across individuals. We therefore use the following measure of effective average
discounting: for an individual of age t in health h, we implicitly define the effective
average discount rate ϱ at a horizon of T years as

βT · Pr ( alive at T + t | t, h ) =
(

1
1 + ϱ

)T

where the probability to be alive at time T + t is evaluated using either the objective
or the subjective survival probabilities. This measure also connects our framework to
the discount rate in a standard infinite-horizon model without survival risk where the

17These averages are computed using the age-specific health distribution implied by our estimated health
transition probabilities and the initial distribution over health at age 20 observed in the PSID.
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Figure 8: Effective discount rate (geometric average) as a function of current age (50 or 70), fore-
cast horizon (on the x-axis) and objective or subjective survival probabilities (dashed
vs. solid lines). Colors indicate the health state: dark green is excellent while red is
poor health. The black line represents the discount rate net of any survival effect.

geometric mean discount rate is simply given by ϱ = β−1 − 1 irrespective of the forecast
horizon.

Figure 8 plots the effective average discount rates for different time horizons. As
can be seen, the effective discount rate varies substantially in the population. Using
the subjective probabilities, the one-year horizon discount rate for a 50-year-old agent
in good health is observationally equivalent to 1/β− 1 = 2.18% (since the one-year
ahead survival for this agent is perceived to be almost certain), while the one-year
horizon discount rate for an equally old agent in bad health is almost 20%. This gap
shrinks at longer horizons but is still 7.9 percentage points at a 10-year horizon. For
70-year-old agents in worst vs. best health state, the difference at the 10-year horizon is
9.5 percentage points.

The magnitude of the dispersion of subjective discount rates is consistent with the
findings by Calvet et al. (2021) who estimate the cross-sectional distribution of time
preference rates based on Swedish micro data, assuming a common survival probability
conditional on age for all agents. They estimate the standard deviation of the time
preference rate to be 7.0 percentage points around a mean of 5.2 percent.

The magnitude of the differences between discount rates based on subjective beliefs
and objective survival probabilities across health states are well in line with the discount
factor heterogeneity estimated by De Nardi, Pashchenko, and Porapakkarm (2017). In a
model with rational survival expectations they find that individuals in bad health on
average have a higher discount rate (i.e., are more impatient). Our results show that the
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difference between the subjective and objective discount rate is larger for individuals in
bad health, and the magnitude of these differences is consistent with their estimates (see
online appendix section F.1 for details).

The pattern of subjective and objective discount rates are also consistent with an
average downward-sloping discount rate along the age gradient, as found by Kureishi
et al. (2021). Netting out the average objective (statistical) survival probability at all
ages, the belief bias in survival probabilities gives rise to a downward sloping residual
discount rate, since older people on average display an upward bias in their beliefs
about survival compared to the young (see Figure 2).

5.2 Effect on savings behavior

The effect of subjective survival beliefs on savings varies depending on age and health.
Working-age individuals in good health have on average higher earnings (see the earn-
ings profiles in Figure E.3 on the online appendix) and slightly higher consumption. The
savings rate in this group is thus primarily driven by the desire to smooth consumption
over the life cycle (which includes more years in retirement due to higher life expectancy)
and a precautionary savings motive (to insure against adverse health shocks). Whether
they act according to subjective or objective survival probabilities has little impact since
agents in good health just prior to retirement do not have a very pronounced survival
bias (see Figure 5). Working-age individuals in poor health, on the other hand, save
substantially less when endowed with subjective survival beliefs since these agents
underestimate their survival prospects.

These differences in savings behavior are illustrated in Figure 9. For selected health
states, the hatched bars show the differences in total savings rates for the model with
objective survival heterogeneity compared to the model with no health heterogeneity
(NHH) disaggregated by deciles of the cash-at-hand distribution. The bars in lighter
color show the additional effect of imposing subjective beliefs. In these graphs, we
define the total savings rate as the fraction of cash-at-hand, i.e., beginning-of-period assets
plus current income, which the individual saves for the next period.18

18These plots are generated by computing weighted averages of differences in policy functions. We plot
underlying policy functions for savings in the appendix section F.2. The differences in the figures
show partial equilibrium effects of introducing health-related risk or objective/subjective beliefs at the
individual level. We impose the equilibrium aggregates (interest rates, tax rates and transfers, bequests,
and the cash-at-hand distribution) computed for the economy with subjective beliefs throughout this
analysis. Note that the difference between the OSH and NHH models is the result of not only differences
in survival, but also labor earnings profiles, differences in medical expenditure risk, and the resulting
endogenous distribution of households.
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Figure 9: Differences in savings rates (defined as the fraction of current cash-at-hand the agent
saves for the next period). The hatched bars show the difference between the objective
survival heterogeneity and no health heterogeneity models conditional on age, health
and cash-at-hand decile. The lighter bars show the additional effect of imposing
subjective survival beliefs. Colors indicate health state: green is excellent while red is
poor health.

As can be seen, the 50-year-olds in poor health save substantially less across the
cash-at-hand distribution, and the difference is mainly driven by the bias in survival
beliefs. When acting according to subjective beliefs, 50-year old agents in poor health
severely underestimate their remaining life span and therefore save approximately 10
percentage points less than in the no-health-heterogeneity model.

The same pattern can be seen in the graph for 70-year-olds, even though the additional
effect from adding the subjective beliefs is slightly weaker (still focusing on the agents
in poor health). The reason for this can be found in Figure 5: at the age of 70, the subjec-
tive survival beliefs of the agents in bad health are close to the objective probabilities.
Moreover, at the age of 70, the effect of the subjective beliefs starts showing up more
substantially for agents in good health as indicated by the lighter green parts of the
green bars.

As can be seen from the graph of 80-year-olds, at higher ages the general optimism
dominates. The addition of subjective beliefs at this age increases the savings rates for
agents both in bad and good health.
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(b) Objective survival heterogeneity (OSH)
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(c) Subjective survival heterogeneity (SSH)

Figure 10: Life cycle profiles for wealth for different scenarios.
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5.3 Effect on wealth accumulation

Figure 10 shows the resulting life cycle profiles for wealth for the three different scenarios:
no health heterogeneity (NHH), objective survival heterogeneity (OSH), and subjective
survival heterogeneity (SSH). We average out all states other than assets, health and age.

For all three models, the life cycle profile for wealth peaks at the age of 64 which is the
last year before retirement. When agents enter retirement, they start drawing down their
wealth and the median individual who survives until the age of 90 has drawn down all
of his savings (remember that all individuals receive retirement benefits and, if needed,
government transfers, so they are not risking zero consumption).

The profile for the OSH model illustrates that agents in bad health accumulate less
wealth than agents in good or excellent health when endowed with objective beliefs
about survival. It should be noted that the mass of agents in bad health is not static
but consists of individuals who have been in bad health for many periods, as well as
individuals who recently drew a bad health shock.

Next, the profile for the SSH model shows that the difference in wealth between agents
in best and worst health increases when the agents act according to their subjective
beliefs. Note also that compared to the NHH and OSH models, the asset holdings at very
high ages increase slightly, since old agents, on average, over-estimate their remaining
lifespan.

In the SSH model, the median wealth among 50–54-year-olds in poor health is 36% of
the median wealth held by those in excellent health of the same age. This health-wealth
gap is very close to what we observe in the HRS (where the corresponding figure for
nonblack males in the age group 50-54 is 34%).19 A substantial part of this gap is due
to biased survival beliefs: in the OSH model, where agents have rational expectations
about their survival, the corresponding figure is 49%. Thus, the biases in survival beliefs
explain approximately a fifth of the health-wealth gap in this age group.20

5.3.1 General equilibrium effects and economy-wide inequality

We now turn to economy-wide wealth inequality and general equilibrium effects. The
first model in Table 5 (SSH-GE) shows the Gini coefficient for wealth (0.70) from the
benchmark model with subjective beliefs in general equilibrium. The second model
(OSH-PE-1) is a partial equilibrium exercise in which we keep aggregate variables

19The empirical health-wealth gap for nonblack males is shown in Figure A.5 in the online appendix.
20Based on the calculation (49.2− 35.8)/(100− 34.1) ≈ 20.3%. The corresponding figures for the next four

5-year age bins are 21%, 17%, 15% and 14%.
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Beliefs GE r w λ Bequests Gini

Subjective survival probabilities
SSH-GE subjective yes 2.37% 1.0000 0.9221 SSH 0.701

Objective survival probabilities
OSH-PE-1 objective no 2.37% 1.0000 0.9221 SSH 0.694
OSH-PE-2 objective no 2.19% 1.0000 0.9221 SSH 0.701
OSH-PE-3 objective no 2.19% 1.0087 0.9221 SSH 0.700
OSH-PE-4 objective no 2.19% 1.0087 0.9232 SSH 0.700
OSH-GE objective yes 2.19% 1.0087 0.9232 OSH 0.702

No health heterogeneity
NHH-GE average yes 2.29% 1.0035 0.9189 NHH 0.715

Table 5: Gini coefficient for different model scenarios in general and partial equilibrium (in-
dicated by column “GE”). Row OSH-PE-1 imposes the same aggregates as SSH-GE
but introduces objective survival beliefs. Rows OSH-PE-2 to OSH-PE-4 additionally
incrementally impose the equilibrium interest rate, wages and tax rate from the OSH
model. The “Bequests” columns indicates which equilibrium bequests were used.

from the SSH-GE scenario (interest rate, wage rate, taxes, and distribution of bequests
received) but let agents act according to objective survival probabilities. In the OSH-
PE-1 model, the Gini coefficient for wealth decreases slightly to 0.69. With objective
survival beliefs, agents in the age group around 55–65 no longer have a downward bias
in expected longevity and therefore higher incentives to save. This effect is strongest
among the agents in poor health with low asset holdings, and thus the result is fewer
poor individuals close to retirement.

The models labeled OSH-PE-2 to 4 incrementally replace the aggregate variables with
the ones from the general equilibrium model with objective beliefs. The equilibrium
interest rate with objective survival beliefs is lower than with subjective beliefs. Remov-
ing the average downward survival bias among the agents close to retirement (which is
when life cycle assets peak) results in higher demand for assets in the model with objec-
tive beliefs. For the capital market to clear, the interest rate needs to fall. The OSH-PE-2
model uses the lower interest rate, but otherwise the same setting as the OSH-PE-1. The
Gini coefficient increases slightly, from 0.69 to 0.70. There are two reasons. First, with a
lower interest rate agents save less in general. Since agents with low productivity and
bad health receive lower bequests, the decrease in savings have a relatively stronger
effect on their total wealth.21 Second, a lower interest rate increases frontloading of

21By the same logic, the health-wealth gap is slightly less pronounced in the OSH-PE-1 model than in the
equilibrium version with objective beliefs (OSH-GE), even though the magnitude of the differences
is small (median wealth held by those in poor health as a fraction of median wealth held by those in
excellent health differs by around 2 percentage points depending on age group). Thus, comparing
the impact of objective vs. subjective survival beliefs based on the general equilibrium results is a
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consumption over the life cycle, and therefore results in slightly more poor elderly in
the economy.

As the results from the OSH-PE-3, OSH-PE-4 and OSH-GE models show, the shifts of
wage rate, taxes and distribution of bequests have virtually no effect on the economy-
wide Gini coefficient for wealth.

The last row in Table 5 shows the general equilibrium results from the model with
no health heterogeneity. The Gini coefficient for wealth is slightly higher than in any
of the models with health heterogeneity. The driver of this is an increased number of
large accidental bequests. The largest amounts bequethed stem from deaths in relatively
young ages (between ages 50 and 65). In a model with no health heterogeneity, these
deaths are equally likely to happen to agents in the top of the asset distribution as to
agents in the bottom. With health-dependent survival on the other hand, it is more likely
that deaths in relatively young ages happen to agents in poor health, who are on average
poorer. Thus, the lack of health heterogeneity gives rise to larger bequests which in turn
gives rise to slightly larger wealth inequality.

5.4 A model with an active bequest motive

There are many drivers of savings that could vary across health but are not included
in our model: the existence of (employer-tied) health or life insurance, human capital
investment, endogenous retirement decisions, portfolio composition, private pensions,
and permanent characteristics such as patience, to name a few (see for instance De Nardi,
French, and Jones (2010), Capatina (2015) or De Nardi, Pashchenko, and Porapakkarm
(2017) for studies taking a broader perspective including several channels). These
mechanisms could all add realism to the model and make the life cycle profiles more in
line with the data. One mechanism often introduced to capture the slow decumulation
of asset in older ages is a warm-glow bequest motive. In this section we therefore use a
model calibration with an active bequest motive (ϕ1 > 0) to show how it interacts with
(subjective) survival heterogeneity.

5.4.1 Calibration

Where applicable, we use the same calibration as in the main text. We determine the
discount factor β, the preference parameters governing the bequest motive (ϕ1 and ϕ2)
and the estate tax exemption threshold χb using the method of simulated moments, i.e.,

conservative choice.

35



Parameter Description Value

Model with bequest
β Discount factor 0.942
ϕ1 Bequest weight 11.157
ϕ2 Bequest shifter 0.001
χb Estate tax exemption 18.333

Table 6: Parameters for the model with a bequest motive.

we minimize the weighted sum of squared distances between targeted and simulated
moments from the model with subjective beliefs about survival.

We again target a capital-to-output ratio of 3 and that 2% of estates should be subject
to estate taxes. Additionally, we try to match the old-age life cycle profile of assets. To
this end, we use the median wealth levels at ages 60, 65, 70, 75, 80 and 85 observed in the
HRS, relative to median wealth at age 55. We choose this approach as it is quantitatively
not possible to match wealth in levels and at the same time impose a capital-output-ratio
of 3 in a model with productive capital as the only asset (after all, most of the wealth in
the data is held in residential real estate). The capital-to-output ratio and the fraction of
estates subject to estate tax are perfectly matched, while the asset holdings by age and
their data counterparts are shown in Table G.1 in the online appendix. Some aspects of
our model are too simplistic to match the data moments exactly. For example, because
we impose an exogenous retirement age of 65, the life cycle profile of assets peaks exactly
at this age, whereas this is not the case in the data.

The estimated parameters are listed in Table 6. As the table shows, the bequest luxury
shifter is small. The reason is that we try to match the median asset holdings late in life.
If bequests were a luxury good, the median asset level would fall quickly towards zero.

5.4.2 Results

Cross-section and life cycle. Figure 11 shows the life cycle profiles for the scenarios
with objective survival heterogeneity (OSH) and subjective survival heterogeneity (SSH).
Overall, due to the bequest motive, older agents do not decumulate their wealth, and
the resulting median asset profile is more in line with the data in both scenarios. Before
retirement, agents in excellent health have more wealth than agents in worse health. The
main reason for this is the higher labor income of the former group.

However, the health-wealth gradient is substantially smaller prior to retirement than
in the baseline calibration without a bequest motive (compare to Figure 10), and is even
reversed after the age of 75, with agents in poor health being richer. This shows that
the effect of combining survival heterogeneity with a bequest motive of this type is
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(a) Objective survival heterogeneity (OSH)
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(b) Subjective survival heterogeneity (SSH)

Figure 11: Median life cycle profiles for wealth, model with an active bequest motive.

not entirely straightforward. The expected utility from leaving a bequest is not only
a function of the amount expected to be handed over to the descendants, but also of
the survival probability: agents with low (objective or subjective) survival prospects
put more weight on the bequest motive. Hence, there are two effects from lower life
expectancy that work in opposite directions: a shorter expected life span makes agents
want to save less for their own consumption in old age, but a stronger bequest motive
induces them to save more. The net effect varies depending on the calibration of
bequest parameters, but the second mechanism is always present with a warm-glow
bequest motive of this type: a shorter life span makes agents want to save more to leave
bequests.22

Thus, in both the OSH and the SSH scenario, the model misses the cross-sectional
correlation between wealth and health in older ages that is present in the data. The
slightly stronger reversal of the health-wealth gradient in the SSH model follows directly
from the biases that amplify the health-survival belief gradient.

Note also that in very high ages, agents keep less assets in the SSH model than in
the OHS model. Agents in the subjective belief model overestimate the probability of a
long life, and therefore put a lower weight on warm-glow bequests, resulting in lower
savings.

Dynamic responses to health shocks. Next, we compare changes in wealth following
negative health shocks in the data to their model counterparts. To this end, we regress
the change in net total wealth (using an inverse hyperbolic sine transformation) on a
negative health shock defined as an indicator for a deterioration in self-reported health

22To aid intuition, in section G.1 in the online appendix we show the mechanisms at play in a simple
two-period model example.
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Dep. variable: relative change in net total wealth

Data Model

(1) (2) No bequest Bequest

Negative health shock -0.111∗∗∗ -0.100∗∗∗ -0.1070∗∗∗ 0.0004∗∗∗

(0.026) (0.026) (0.001) (0.000)
Age FE Yes Yes Yes Yes
Health FE Yes Yes Yes Yes
Education FE Yes
Observations 35,821 35,821 1,300,204 1,300,204
Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Health shocks and changes in wealth. The table shows the results of regressing changes
in net total wealth (after an inverse hyperbolic sign transformation) on an indicator
for a deterioration in self-reported health between two consecutive survey waves. The
regression includes fully interacted fixed effects as indicated. For the models, we use the
SSH scenario where agents act according to their subjective beliefs. Sample restricted to
nonblack males age 65 and above.

between survey waves. We restrict the sample to ages 65 and above in order to focus on
the part of the life cycle where life expectancy and bequest considerations are important
drivers of savings. We simulate a panel of 100,000 agents and collapse the data to
two-year frequency to replicate the biennial HRS.23 The changes in assets and health are
defined analogously to the data, taking differences over two-year periods.

The results in Table 7 show that the model with a bequest motive produces dynamic
savings responses that are difficult to square with the data. The estimated savings
response to a negative health shock in the model with an active bequest motive is
effectively zero, whereas the model without an active bequest motive produces savings
responses that are well in line with the data.

In sum, in a model with health heterogeneity, both the cross-sectional implications
and the dynamic responses to health shocks make the model with a bequest motive
calibrated to match median asset holdings in old age difficult to align with data. The
relative strength of the different effects we point to in this section of course varies
depending on calibration, but should be kept in mind when combining a warm-glow
bequest motive with dynamically evolving expected longevity.

23We start the simulation with 100,000 agents at the age of 20, of which 86,851 are still alive at the age of 65.
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6 Conclusions

This paper explores how variation in objective and subjectively perceived life expectancy
affects savings behavior of healthy and unhealthy people. Using HRS data, we show
that there exists a within-cohort steepness bias in survival beliefs: individuals in bad health
not only have a shorter expected life span, but are also relatively more downward biased
about their survival chances, while individuals in good health and thus with higher
survival probability display a more upward bias. These systematic biases exacerbate the
survival expectancy heterogeneity in the population.

The differences in beliefs about survival translate into time preference heterogeneity
and consequently savings behavior. We show that biases in beliefs about survival can
explain approximately one fifth of the differences in accumulated wealth between those
in excellent vs. poor health, mostly because the latter group underestimates their life
expectancy.

This paper ties into a strand of current research investigating preference heterogeneity
and its importance for individual choices and aggregate outcomes. We provide an intu-
itively plausible and micro-founded source of heterogeneity: the perceived probability
of surviving to future states of the world. Our quantification of this channel shows
that life expectancy heterogeneity is important and should be included in the list of
potential sources of heterogeneity that we need to consider in our analyses. Investi-
gating the importance of the steepness bias for within-cohort differences in terms of
portfolio allocations, demand for financial products, or retirement behavior is left for
future research.
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A Detailed data description

A.1 Data used for the analysis

The RAND HRS Longitudinal File 2018 (V2) includes 14 waves administered over the
years 1992–2018. The first cohort included in the survey was between 51 and 61 years
old in 1992, and thereafter new (older and younger) cohorts were added, as illustrated
in Figure A.1. Figure A.2 shows the number of respondents with positive sampling
weights by wave and cohort.

Figure A.3 shows the fraction of respondents in each wave who are marked as non-
respondents in all subsequent waves but do not have a death date on record. For
example, in wave 11 (administered in 2012), approximately four percent of participants
did not respond to any of the later waves 12–14. Since no death date is recorded for
these individuals, we cannot use these observations to estimate survival probabilities.
Based on these non-response patterns, we only include waves up to and including the
year 2014, as the last two waves exhibit unusually high non-response rates compared to
the historical averages.

Up until RAND version O (covering waves until 2012), the survey was complemented
with death dates taken directly from the National Death Index (NDI), but this data was
later removed from the public files. Our analysis of death dates in the releases following
version O shows that without the NDI data, death dates are sometimes recorded with
considerable lag. Using the RAND 2018 (V2) files, but restricting the sample only up to
the year 2012 produces almost identical results to the ones obtained with the original
version O data that included the NDI death dates.
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Figure A.1: Longitudinal survey design of the HRS. The y-axis shows respondents’ age by cohort
and wave, ignoring spouses who are not age eligible. The legend lists all birth
cohorts included in the HRS (using their official acronyms) as well as their birth
years. AHEAD was initially a separate survey conducted in 1993 and 1995.
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Figure A.2: Number of observations by wave and cohort. Only observations with positive weight
are included. AHEAD was initially a separate survey conducted in 1993 and 1995.
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Figure A.3: HRS attrition by wave: fraction of participants who do not respond to any of the
subsequent survey waves. Colors indicate the health state: dark green is excellent
while red is poor health. Error bars indicate 95% confidence intervals.
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A.2 Description of main variables

We list the central variables used in our analysis in Table A.1. Some of them are computed
from several variables in the RAND HRS version, a process we detail below.

Variable Description RAND HRS
variable(s)

Health Self-reported health with possible answers (1) excellent,
(2) very good, (3) good, (4) fair, or (5) poor

RwSHLT

Age Respondent’s age at time of interview end date RwAGEY E

Birth date Respondent’s date of birth (year, month) RABYEAR, RABMONTH
Race Respondent’s race, recoded to black indicator variable RARACEM

Sex Respondent’s sex, recoded to female indicator variable RAGENDER

Education Educational attainment, recoded to three groups RAEDUC

Survival belief Self-reported probability to live until a certain age (75, 85
or some other age)

RwLIV75, RwLIV85,
RwLIV10, RwLIV10A

Wealth Net total wealth, adjusted for household size, outliers,
time and cohort fixed effects

HwATOTB, HwCPL

Weight Respondent-level sampling weights RwWTREP, RwWTR NH,
RwWTCRNH

Sampling error
stratum ID

Stratum identifier used for stratified cluster bootstrapping
of confidence intervals

RAESTRAT

Samping error
cluster ID

Primary stage unit (cluster) identifier used for stratified
cluster bootstrapping of confidence intervals

RAEHSAMP

Table A.1: Variables from RAND HRS version 2018 (V2) used in the analysis

Race. The variable RARACEM takes on three values: White/Caucasian, Black/African-
American or Other. For our purposes, we combine the first and third groups to obtain the
indicator variable black ∈ {0, 1}.

Wealth. We take net total wealth from the variable HwTOTB. We adjust this wealth
variable for cohort (using the HRS birth cohort of the oldest individual in a household)
and year fixed effects, using the cohort born between 1931–1941 and the year 2000 as base
categories. Furthermore, for respondents living in couple households (HwCPL = 1), we
divide the wealth measure by two to get a respondent-level variable that is comparable
across household sizes.

Self-reported survival probability. Depending on the survey wave, respondents are
asked about their belief to live to one or two target ages. For sufficiently young re-
spondents, this target age is 75 and the survival probability is stored in RLIV75. For
older respondents, the target age is 85 and the answer is stored in RLIV85. In waves 2
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Figure A.4: Joint distribution of age and target ages used in survival probability questions. Each
panel reports the total number of observations for each target age.

and 3, and from wave 5 onward, respondents who are too old to be asked about their
survival beliefs to age 75 are instead asked to state the probability to live at least 10 more
years (with possible target ages 80, 85, 90, 95 and 100), and the target age and survival
probability are reported in RLIV10 and RLIV10A, respectively.

Figure A.4 plots the distribution of elicited survival beliefs over the target age and the
respondent’s age at which the question as asked. As the figure shows, respondents were
generally not asked about a target age if it was less than 10 years away. The gap at ages
66–69 for target age 85 is due to changes in questionnaires across waves.

Education. The HRS variable RAEDUC records five categories: less than high school, GED,
high school graduate, some college, and college and above. We combine the three middle
groups into one and use the classification no high school, high school, and college.

Table A.2 shows the distribution of individuals and person-year observations by
education. As can be seen, only 10.8% of the black males and 12.6% of the black females
have a college degree in our sample, while the corresponding figures for the nonblack
population is 23.5% (males) and 16.3% (females).

Sampling weights. We use the HRS respondent-level sampling weights. These weights
are time varying, so for each transition we use a respondent’s weight at transition start.
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All Nonblack Black

Male Female Male Female

Distribution of individuals
By education

No high school 27.2% 24.6% 25.5% 39.0% 36.1%
High school 54.6% 51.9% 58.3% 50.1% 51.3%
College 18.2% 23.5% 16.2% 10.8% 12.6%

Distribution of observations
By education

No high school 25.0% 21.8% 23.2% 40.6% 36.5%
High school 56.0% 52.7% 60.4% 48.9% 51.2%
College 19.0% 25.4% 16.4% 10.5% 12.3%

Table A.2: Distribution of individuals and person-year observations by education and permanent
income tercile in the estimation sample (unweighted).

Prior to wave 5, the HRS did not provide weights for individuals who moved to nursing
homes, in which case the variable RwWTRESP was zero. From wave 5 onward, nursing
home weights are provided in RwWTR NR, and the combined weight is stored in RwWTCRNH

(only one of RwWTRESP or RwWTR NR is non-zero, depending on the nursing home status).
For individuals who moved to nursing homes prior to wave 5, we back-fill their nursing-
home weight from wave 5 to earlier waves if they were alive in wave 5. For respondents
who moved to nursing homes prior to wave 5 but died before wave 5 and thus were
never assigned a nursing-home weight, we forward-fill any missing weights using the
last non-zero value of RwWTRESP as long as the respondent is alive.

A.3 Confidence intervals

We compute confidence intervals or standard errors in all graphs and tables presented
in the paper in line with recommendations that take into account the stratified and
clustered survey design of the HRS (see HRS Staff and Co-Investigators (2006) and
Heeringa, West, and Berglund (2017, Chapter 4)). This involves specifying sampling error
strata and the sampling error cluster (also called sampling error computation unit or SECU)
in addition to the sampling weights. For this purpose, the RAND HRS data contains the
variable RAESTRAT which designates sampling error strata and the variable RAEHSAMP

which splits each stratum into exactly two sampling error clusters. Note that these
clusters need not correspond one-to-one to the primary stage sampling units (PSUs) that
are part of the HRS survey design, even though this is the case for nonself-representing
PSUs. Self-representing PSUs are split into two for the purpose of variance estimation
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(HRS Staff 2008).
To compute confidence intervals for the Maximum Likelihood and Non-linear Least

Squares estimates for health transitions and objective as well as subjective survival
beliefs, we draw 1000 replication samples by randomly selecting one of the two sampling
error clusters from each of the 61 sampling error strata. This is a special case of the
bootstrap of Rust and Rao (1996) and Rao and Wu (1988) to a setting of only two sampling
error cluster per sampling error stratum.

A.4 Disaggregated wealth profiles by health

This section contains additional plots of net total wealth by health for various subsamples.
Wealth is computed using the variable HwATOTB, which is the sum of housing, other real
estate, vehicles, businesses, IRA and Keogh accounts, stocks, checkings, and all other
savings, net of mortgages and other debts.

In Figure A.5, we plot the wealth profiles by self-reported health for the black/nonblack
and male/female subsamples. In Figure A.6, we instead disaggregate them by house-
hold size (single vs. couple) and sex. The graphs illustrate that the health gradient of
wealth is present in all subsamples, even though the confidence intervals for the single
and black sub-groups are much larger due to the smaller sample size.

In Figure A.7, we disaggregate the nonblack sample by sex and education level.
Again, the health gradient of wealth is present in all subsamples, even though the
confidence intervals are are larger especially for the older population, despite grouping
the observation into 5-year bins.

9



0
10

0
20

0
30

0
To

ta
l a

ss
et

s 
(T

ho
us

an
d 

U
SD

)

nonblack/male nonblack/female

50 60 70 80 90
Age

0
10

0
20

0
30

0
To

ta
l a

ss
et

s 
(T

ho
us

an
d 

U
SD

)

black/male

50 60 70 80 90
Age

black/female

Figure A.5: Median net total household wealth by self-reported health state, race and sex. Pooled
sample from HRS 1992–2014. Assets are adjusted for outliers, time and cohort fixed
effects, and household size. Colors indicate the health state: dark green is excellent
while red is poor health. Error bars indicate 95% confidence intervals.
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Figure A.6: Median net total household wealth by self-reported health state, household size and
sex. Pooled sample from HRS 1992–2014. Assets are adjusted for outliers, time and
cohort fixed effects, and household size. Colors indicate the health state: dark green
is excellent while red is poor health. Error bars indicate 95% confidence intervals.
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Figure A.7: Median net total household wealth by self-reported health state, sex and education
level. Nonblack population. Pooled sample from HRS 1992–2014. Assets are adjusted
for outliers, time and cohort fixed effects, and household size. Colors indicate the
health state: dark green is excellent while red is poor health. Error bars indicate 95%
confidence intervals.
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A.5 Additional empirical results

A.5.1 Correlation between subjective survival beliefs and wealth

We split the sample into sex/age/race cells, and within each cell we use the elicited
subjective belief about surviving until the target age for which we have the most re-
sponses within a cell (individuals are often asked about two target ages). We define an
indicator variable for “above median SSB” and set it to one whenever individuals report
a subjective survival belief above the median (within age/race/sex cell).

We regress assets on the “above median SSB” indicator separately for all demographic
groups, controlling for age fixed effects, education and couple status. We take assets
measured as adjusted net total wealth in thousands of year 2000 US dollars and then
apply the inverse hyperbolic sine transformation since assets are heavily skewed and
contains zeros and negative values. All coefficients of interest are positive and significant
on the 1% level also using a non-transformed asset measure.

The results for the transformed asset variable are shown in Table 1 in the main text.
Being above median in elicited SSB is correlated with more wealth, even after controlling
for education and couple status. As a robustness check, we also use survival beliefs as a
continuous variable and report the results in Table A.3.

Dep. variable: net total wealth (inverse hyperbolic sine transformation)

Men Women

(1) (2) (3) (4) (5) (6)

Survival belief 0.964∗∗∗ 0.640∗∗∗ 0.614∗∗∗ 1.405∗∗∗ 0.957∗∗∗ 0.905∗∗∗

(0.090) (0.080) (0.079) (0.067) (0.060) (0.061)
Age FE Yes Yes Yes Yes Yes Yes
Education FE Yes Yes Yes Yes
Couple FE Yes Yes
Observations 54,212 54,212 54,212 70,537 70,537 70,537
Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.3: Net total wealth and subjective survival beliefs. The table shows the results of regress-
ing net total wealth (after an inverse hyperbolic sign transformation) on subjective
survival beliefs. The regression includes fully interacted fixed effects as indicated.
Nonblack population.
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Dep. variable: change in net total wealth (in thousand USD)

Men Women

(1) (2) (3) (4)

Negative health shock -12.981∗∗∗ -11.001∗∗∗ -5.785∗∗∗ -4.665∗∗∗

(1.823) (1.873) (1.623) (1.591)
Age FE Yes Yes Yes Yes
Health FE Yes Yes Yes Yes
Education FE Yes Yes
Observations 61,528 61,528 80,615 80,615
Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.4: Health shocks and absolute changes in wealth. The table shows the results of regress-
ing changes in net total wealth (in thousand USD) on an indicator for a deterioration in
self-reported health between two consecutive survey waves. The regression includes
fully interacted fixed effects as indicated. Nonblack population.

A.5.2 Negative health shocks and asset decumulation

We identify individuals who experience a negative health shock as those who report a
deterioration in their self-reported health state by at least one step (e.g., from “excellent”
to “very good” or worse) between two consecutive survey waves. Then we look at how
such a negative health shock is correlated with the individuals’ asset accumulation or
decumulation.

We split the sample by demographic subgroup (black/nonblack and male/female)
and run the following regression:

∆ait+1 = α + β1 {health shock}it+1 + x′itγ + ε it (A.1)

with ∆ait+1 denoting the change in (an inverse hyperbolic sine transformation of) net
total wealth between time t and t + 1, and xit being controls (age fixed effects, education
fixed effects, health state in previous wave and interaction terms).

Table 2 in the main text shows the estimates of the coefficient of interest, β, for the
nonblack population. Individuals who experience a negative health shock decumulate
their assets more compared to individuals (of the same race, age, education level, and
initial health) who do not experience a negative health shock.

Table A.4 shows the results for the corresponding regressions using a non-transformed
asset variable. The patterns are the same.

One concern is that the decumulation (or slower accumulation) of assets associated
with a health deterioration is driven by lower labor income or medical expenditures. To
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Dep. variable: change in net total wealth

Men age 65+ Men age 65+, net of medical exp.

(1) (2) (3) (4)

Negative health shock -0.111∗∗∗ -0.100∗∗∗ -0.111∗∗∗ -0.098∗∗∗

(0.026) (0.026) (0.029) (0.029)
Age FE Yes Yes Yes Yes
Health FE Yes Yes Yes Yes
Education FE Yes Yes
Observations 35,821 35,821 28,107 28,107
Clustered standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.5: Health shocks and changes in wealth. The table shows the results of regressing
changes in net total wealth (after an inverse hyperbolic sign transformation) on an
indicator for a deterioration in self-reported health between two consecutive survey
waves. The regression includes fully interacted fixed effects as indicated. Nonblack
men.

address this issue, we first restrict the sample to nonblack men age 65 or older so that
the importance of labor income is small. As a second step, we consider the change in
assets removing any changes due to medical expenditures, that is, we define the change
in assets from one wave to the next as:

∆at+1 = arcsinh(at+1 + mt+1)− arcsinh(at)

with mt+1 denoting the out-of-pocket medical expenditures accrued between survey
wave t and t + 1. Table A.5 reports the results from running regression (A.1) on these
alternative samples. Columns 1 and 2 show the results for the standard asset definition,
while columns 3 and 4 show the results when we remove the effect of medical expendi-
tures. As the table shows, the main result — that a negative health shock is associated
with a faster decumulation (or slower accumulation) of assets — remains, even though
the magnitudes become smaller.
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B Objective life expectancies

B.1 Descriptive statistics

Table B.1 shows descriptive statistics for the sample used to estimate the objective health
and survival transitions.

All Nonblack Black

Male Female Male Female

Sample size
N. of individuals 34,196 12,744 15,461 2,424 3,567
N. of observations 219,539 81,278 103,880 13,245 21,136
Avg. observations/indiv. 6.4 6.4 6.7 5.5 5.9

Age distribution
[50, 60) 34.4% 36.0% 32.3% 40.7% 36.8%
[60, 70) 30.6% 31.8% 29.3% 32.9% 31.2%
[70, 80) 21.7% 21.4% 22.4% 18.3% 19.9%
[80, 90) 11.3% 9.5% 13.3% 7.0% 10.0%
90+ 2.1% 1.3% 2.8% 1.0% 2.1%

Mean 66.1 65.3 67.0 64.0 65.4

Self-reported health distribution (all ages)
(1) Excellent 12.5% 13.6% 12.7% 8.8% 5.1%
(2) Very good 30.0% 30.9% 31.0% 22.1% 20.3%
(3) Good 30.6% 30.8% 29.9% 31.6% 34.0%
(4) Fair 18.6% 17.1% 18.1% 25.9% 28.1%
(5) Poor 8.4% 7.6% 8.3% 11.7% 12.5%

Table B.1: Descriptive statistics for sample used to estimate objective health and survival transi-
tions. Mean age and distributions are weighted using HRS sample weights.

B.2 Estimation results

This section is a brief summary of some of the key results from the estimation of the
objective health and survival process. A full description can be found in Foltyn and
Olsson (2021).

Figure B.1 plots the life expectancy conditional on the initial health state at the age of
50 and 70 for the different demographic subgroups. As can be seen, the health gradient
is substantial: the difference in expected life length between a 50-year-old nonblack man
in the best and in the worst health state is 6.1 years. The figure also shows that the life
expectancy is lower for men compared to women, and for the black compared to the
nonblack subpopulation, as is well known.

Even conditional on education, there is a strong health gradient in life expectancy.
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Figure B.1: Life expectancy by race, sex and health state for at age 50 and 70. Average life
expectancy is computed as the weighted mean over health states at ages 50–51 (top)
or 70–71 (bottom). Error bars indicate 95% confidence intervals.

Figure B.2 shows the life expectancy at age 50 by race, sex, education and health state.
For instance, the difference between a college-educated nonblack male in the best health
state and an equally educated nonblack male in the worst health state is 4.5 years,
while the corresponding difference for college-educated nonblack women is smaller, 2.6
years (but still statistically significant). The corresponding figures for individuals with
high-school is 2.8 years (men) and 2.2 years (women). For this analysis, we collapse the
data into three health groups, merging health states 1 (excellent) and 2 (very good) into
“best” health, and health states 4 (fair) and 5 (poor) into “worst” health, as otherwise the
number of observations for some education-health groups becomes too small.

B.3 Comparing model estimates to data moments

We validate our estimated health and survival process and the resulting objective life ex-
pectancy calculations in various ways to ensure the estimated process correctly captures
the observed data.

First, to compare model predictions to raw data moments, we compute the two-year
transition probabilities implied by our annual model. We then plot these together with
the fraction of individuals with a particular outcome in the subsample restricted to
two-year transitions, which is the large majority of observations (84% of the full sample).
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Figure B.2: Life expectancy at age 50 by race, sex, education and health state. Error bars indicate
bootstrapped 95% confidence intervals.

Figure B.3 shows the results for the nonblack men. As the figure shows, the estimated
probabilities and the data are remarkably close.

Second, to assess how well our model predicts long-run outcomes, we compare actual
survival rates as observed in the HRS with model predictions over a time horizon of up
to 22 years. Figure B.4 plots the model-predicted survival probabilities for all individuals
observed in the survey in 1994 against the fraction actually surviving until 2014. Each
dot represents a two-year age bin, and we discard age bins with less than 20 observations.
As can be seen, the estimated model captures the long-term survival probabilities well.

Third, we compare the resulting life expectancies from our estimated model to what
is reported in the period life tables by the National Vital Statistics System (NVSS) during
the years 1992–2014.

Our model gives an average life expectancy of 78.4 years for 50-year-old nonblack
men and 82.4 for nonblack women. This is well in line with what is reported by the
NVSS during this period. For white men, the NVSS life expectancy at the age of 50
is between 77.0 and 79.9 during the sample period, while for white women it ranges
from 81.7 to 83.4. For black men, our model predicts 74.9 years, while NVSS reports
between 72.8 and 77.2 for the period. For black women, our model predicts 78.5, while
the NVSS reports between 78.3 and 81.5. Thus, in general the model predictions are well
within what is reported by NVSS, even though the prediction for life expectancy for
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Figure B.3: Two-year transition probabilities for nonblack men. Graph show the best (“excel-
lent”), middle (“good”) and worst (“poor”) health states. Health transition probabil-
ities are conditional on survival. Right-most column shows survival probabilities.
Shaded areas indicate 95% confidence intervals.

black women is on the lower end.
The conclusions are similar for life expectancy at 70. Our model predicts a life ex-

pectancy of 83.2 years for nonblack men and 85.6 for nonblack women. The correspond-
ing life expectancies reported by NVSS during the period 1992 to 2014 range between
82.3 and 84.5 for white men, and between 85.3 and 86.6 for white women. For black men
the model predicts 81.5, while the NVSS estimates range from 80.8 and 83.3, and for the
black women the model prediction is 84.2, while the NVSS estimates range from 83.9 to
86.1.
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C Survival beliefs: additional results

C.1 Objective vs. subjective survival probabilities by age and sex

A potential concern when comparing the subjective beliefs about survival to the life-
table survival probabilities is that the sample of individuals answering the subjective
probability questions is non-representative. Then differences between subjective survival
and life tables may arise not only from biases but also from non-representativeness.

In Figure C.1, the solid black line labeled “objective survival probability” shows
the weighted average of the objective survival probabilities for the same sample as the
subjective beliefs. We use the health and survival dynamics model to estimate the
objective survival for each individual, conditional on their age, race, sex and health state
(using a specification with a linear time trend). We control for cohort and wave fixed
effects, using the HRS cohort (birth cohort 1931–1941) and wave 6 (year 2002, in the
middle of our sample) as base categories. As can be seen, the graph is very similar to
Figure 3 in the main paper.
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Figure C.1: Objective vs. subjective survival probabilities by age and sex (controlling for year
and cohort fixed effects). The objective probabilities are the weighted average
for the individuals reporting a subjective belief. The number next to the black
line indicates target age. The blue line shows (weighted) average expectation in the
nonblack population. Shaded areas indicate 95% confidence intervals..
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C.2 Expectation errors in survival probabilities to age 95

Figure C.2 shows the elicited beliefs about survival vs. estimated objective (statistical)
survival probabilities for target age 95. Target ages 75 and 85 are shown in Figure 3 in
the main text.

0.0

0.2

0.4

0.6

0.8

1.0
Av

g.
 s

el
f-r

ep
or

te
d 

su
rv

. p
ro

b.

nonblack/male nonblack/female

0.0 0.2 0.4 0.6 0.8 1.0
Model-predicted surv. prob.

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 s
el

f-r
ep

or
te

d 
su

rv
. p

ro
b.

black/male

0.0 0.2 0.4 0.6 0.8 1.0
Model-predicted surv. prob.

black/female

Figure C.2: Elicited beliefs about survival vs. estimated objective (statistical) survival probabili-
ties for target age 95. Each bubble represents the average for a race/sex/age/health
group. The x-axis shows the model-predicted (objective) survival probability, the
y-axis the average self-reported survival probability for that group. Colors indicate
the health state: dark green is excellent while red is poor health. The size indicates the
number of observations in each cell. We exclude cells with less than 20 observations.
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C.3 Expectation errors by education

In order to explore the robustness of the survival bias patterns documented in the main
text, we use the estimates from Foltyn and Olsson (2021) for the objective health and
survival process for three levels of educational attainment: no high school, high school,
and college (see section A.2 for a definition of these groups). We then plot these objective
survival probabilities against the elicited survival beliefs for each education level. The
results are displayed in Figure C.3 for target age 75, Figure C.4 for target age 85 and in
Figure C.5 for target age 95.

For this exercise, we collapse the original five self-reported health states to three
groups, combining the two best and two worst states. This is necessary as the finer
partition by education leaves very few observations for some subsamples, especially
for the highly-educated black groups (see Table A.2 for the distribution over education
levels). This lack of observations is particularly pronounced for college-educated blacks
at high ages, as there are hardly any such respondents in the HRS who could be asked
about their survival chances to age 95 (see Figure C.5, panel (c)). Note that for this
reason, we include all groups with at least five observations in the scatter plots, whereas
in the main text we require at least 20 observations per dot to reduce visual clutter.
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Figure C.3: Elicited beliefs about survival vs. estimated objective (statistical) survival proba-
bilities for target age 75. Each bubble represents the average for a race/sex/age/-
education/health group. The size indicates the number of observations in each cell.
We exclude cells with less than 5 observations.
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Figure C.4: Elicited beliefs about survival vs. estimated objective (statistical) survival proba-
bilities for target age 85. Each bubble represents the average for a race/sex/age/-
education/health group. The size indicates the number of observations in each cell.
We exclude cells with less than 5 observations.
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Figure C.5: Elicited beliefs about survival vs. estimated objective (statistical) survival proba-
bilities for target age 95. Each bubble represents the average for a race/sex/age/-
education/health group. The size indicates the number of observations in each cell.
We exclude cells with less than 5 observations.
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C.4 Survival bias by sex, race, age and self-reported health

Figure 5 in the main text shows the survival bias by sex, age and self-reported health
for the nonblack population. Figure C.6 shows the corresponding graphs for the black
population. As the figure shows, the patterns are the same, but standard errors are larger
due to smaller sample size.
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Figure C.6: Survival bias by sex, age and self-reported health. Black population. Positive bias
indicates that the group is overestimating their survival probability. Colors indicate
the health state: dark green is excellent while red is poor health. Error bars indicate
95% confidence intervals.
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C.5 Comparison to Grevenbrock et al. (2021)

In a related paper, Grevenbrock et al. (2021) (henceforth GGLZ) estimate survival based
on several additional characteristics besides self-reported health, age, and sex, such
as smoking and drinking behavior, and chronic diseases. Grouping individuals based
on their estimated objective survival probability, they find that individuals with low
objective survival probability in general overestimate, while individuals with high
objective probability underestimate their survival probabilities, in other words, at a first
glance the reverse pattern compared to what we find.

There are three main differences between our approaches:

1. Different estimation strategies for objective survival probabilities (OSPs)

2. Different samples (both for objective survival and subjective beliefs)

3. Different grouping of individual data

As we show below, point 3 is the most important. If we apply the same sample restric-
tions in terms of age and survey years as GGLZ (which leaves us with about a fifth of
our original sample) and group our data in the same way as GGLZ do, we more or less
recover the same pattern.

Figure C.7 shows the importance of the way the observations are grouped in prac-
tice. First, Figure C.7(a) shows the “raw data”, merged into the same graph. In other
words: all sex/race/age/health cells presented separately in Figure 3(a), Figure 3(b),
and Figure C.2 are here placed together in the same graph.

Next, Figure C.7(b) presents a restricted sample: only observations where a respondent
is 65 or older from wave 8–12 are included. This corresponds to the sample used in
GGLZ.

Finally, Figure C.7(c) shows the resulting pattern if we group the observations in the
previous panel into 5% objective probability bins. As this last figure shows, grouped in
this manner there is a flatness pattern, as in the GGLZ paper.

It is interesting to note that GGLZ regress observed biases on psychological variables
and show that more optimistic respondents overestimate their survival chances. This
could help shed some light on why the pattern we observe emerges, if individuals in
good health are generally more optimistic.
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(a) Pooled sample across race and sex. Each bubble represents the average for a sex/race/age/health group.
Colors indicate the health state: dark green is excellent while red is poor health.
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(b) Same plot as subfigure (a), but restricting the sample to age 65+ and only waves 8–12 (year 2006–2012).
This corresponds to the sample used by GGLZ.
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(c) Same data as subfigure (b), grouped into 5% objective probability bins.

Figure C.7: Illustration of the effect of regrouping the data used in our paper. All graphs show
beliefs about survival vs. estimated objective (statistical) survival probabilities. The
x-axis shows the model-predicted (objective) survival probability, the y-axis the
average self-reported survival probability for that group. The size indicates the
number of observations in each cell. We exclude cells with less than 20 observations.
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C.6 Objective vs. subjective life expectancy by age, sex, and health

This section contains additional graphs contrasting the objective and subjective expected
longevity for all demographic subsamples. In Figure C.8, we plot the objective life
expectancy on the left and the life expectancy implied by the subjective survival beliefs
on the right (panel (a) is the same as Figure 7 in the main text).

The main take-away from these graphs is that the survival bias exhibits a similar
pattern across all groups, especially among the nonblack population. However, due to
the small black sample size, in particular among the very old (see Table B.1 and Table 3),
the confidence intervals for these estimates are very wide.
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Figure C.8: Life expectancy by age and health. Colors indicate the health state: dark green is
excellent while red is poor health. Shaded areas indicate 95% confidence intervals.
For each bootstrapped sample we re-estimate the objective health process.
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C.7 Estimated subjective survival probability vs. elicited beliefs

In Figure C.9, we plot the model-predicted subjective survival against elicited beliefs.
As can be seen, the estimated model for subjective beliefs captures the main picture very
well, since the dots, each representing an age/health/target-age group, line up closely
along the 45-degree line.
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(b) Target age 85
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Figure C.9: Elicited beliefs about survival vs. estimated subjective survival probabilities. Each
bubble represents the average for an age/health group. The x-axis shows predicted
survival probability according to the subjective model and the y-axis the average
self-reported survival probability for that group. Colors indicate the health state:
dark green is excellent while red is poor health.
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D Model details

D.1 Intergenerational linkages and bequests

This section provides a detailed discussion of the stochastic intergenerational links
used to distribute bequests left by parents to children in a way that creates positive
intergenerational sorting similar to what is observed in US data.

D.1.1 Household problem

Consider the retired agent’s problem from the main text which we restate here for
convenience:

Vr (a, p, h, η, 1b, t) = max
c, k

{
u(c) + βπs

htE
[

Vr
(
x′
) ∣∣∣ p, h, η, 1b, t

]
+ β

(
1− πs

ht
)
E
[

Vb
(
b′
) ∣∣∣ h, η, 1b, t

]}
(D.1)
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(
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}
= (0, 0)
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(
η′, ν′, t + 1

)}
− Tb

(
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{
0, Rk + b′∗ −m

(
η′, ν′, t + 1

)})
(D.3)

Throughout this section, we adopt the convention that quantities designated with a ∗
subscript pertain to parents, e.g., b∗ being bequests left by an agent’s parents, while b
denotes the bequests left by the agent.

Instead of directly modeling the intergenerational joint distribution of the children’s
and parents’ state vectors, we proxy such links via an intergenerational correlation
of lifetime income quintiles which we take from Chetty et al. (2014). However, since
lifetime income quintiles are not part of an agent’s state, we approximate these using
the states (p, h, t) in a probabilistic fashion. This implies that the bequests b∗ received by
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children are fully characterized by (p, h, t), and thus, conditional on receiving a positive
bequest, deterministic.

The probabilistic mapping between children’s and parents’ states has three compo-
nents and works as follows:

1. Q1 : (p, h, t) 7→ ∆4(q) defines a mapping of children’s states into lifetime income
quintiles q where ∆4(q) is a 4-dimensional simplex which represents the PMF over
these quintiles. For example, a child who was in the highest productivity state and
in excellent health at the age of 50 is more likely to be in the top lifetime income
quintile than someone who was at the bottom of the labor productivity distribution
or in poor health.

2. Q2 : q 7→ ∆4(q∗) represents the intergenerational linkages by mapping each
child’s lifetime income quintile into a distribution over the parents’ lifetime income
quintiles. This mapping is taken directly from Chetty et al. (2014).

3. Q3 : q∗ 7→ ∆|P|·|H|−1(p∗, h∗ | t∗ = t+T∗) maps the parental lifetime income quintile
back into a distribution over the parental (p∗, h∗) conditional on the parents’ age
t∗ = t + T∗. We impose that parents are always T∗ = 30 years older than their
children.

For simplicity, the probability that an agent’s parents survive (and thus no bequest is
passed on),

πs
t∗ ≡ E

[
πs

h∗,t∗

∣∣ t∗
]

, (D.4)

is independent of both the parents’ health (which is averaged out) as well as the child’s
health. However, the intergenerational correlation in lifetime income quintiles and the
interdependency of lifetime income and health implies that healthier children are more
likely to have healthier parents, who it turn are more likely to live longer. We ignore this
additional intergenerational link since it is computationally infeasible to keep track of,
and we have no data on self-reported health across generations.

D.1.2 Intergenerational income links

We use the 5× 5 double stochastic matrix from Chetty et al. (2014, Table II) shown in
Table D.1 which summarizes the joint distribution of parent and child incomes in the US:

A few notes on how this transition matrix was obtained:
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Parent quintile

Child quintile 1 2 3 4 5

1 33.7% 24.2% 17.8% 13.4% 10.9%
2 28.0% 24.2% 19.8% 16.0% 11.9%
3 18.4% 21.7% 22.1% 20.9% 17.0%
4 12.3% 17.6% 22.0% 24.4% 23.6%
5 7.5% 12.3% 18.3% 25.4% 36.5%

Table D.1: Intergerational quintile transition matrix for the US. Source: Chetty et al. (2014), Table
II

1. The intergenerational links are based on US families who had children born in
1980–1982.

2. Parental income is measured as the average gross family income including taxable
capital returns between 1996–2000.

3. Child income is measured in the same way for the years 2011–2012, i.e., when the
child generation was about 29–32.

4. Chetty et al. (2014) do various robustness checks, for example looking at earlier
child cohorts (from another, smaller, data source). The main conclusion is that
the rank-rank correlation is mostly unaffected because the income ranks have
stabilized by the age of 30.

Relying on the last point, we abstract from the fact that these rank-rank correlations
are computed at a particular age. Instead, we interpret the matrix in Table D.1 as the
joint distribution of parent and child lifetime income quintiles.

Lifetime income in the model. In the model, we don’t keep track of lifetime income (we
don’t keep track of individuals during the simulation when solving for the equilibrium).
However, for each point on the state space, we need to compute the probabilistic
distribution over the population lifetime income quintiles as a function of states (p, h, t).
To this end, we run an auxiliary simulation of the exogenous earnings process for a panel
of one million households where we keep track of individuals until retirement (this
simulation is completely independent of the model solution and needs to be run only
once). Using this simulated panel, we establish the mapping from (p, h, t) as follows:

1. Simulate household i = 1, . . . , N starting at model age 1 until model age 45.
This involves drawing the exogenous shocks for health h and the persistent and
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transitory income shocks p and ϵ.

2. Compute the average working-age gross income for individual i as

Ii =
1

Tr − 1

Tr−1

∑
t=1

yit

In what follows, we use the simpler term lifetime income whenever we refer to this
working-age income in the model.

3. Rank individuals by their lifetime income Ii and bin them into quintiles.

4. Using the simulated data, for any tuple of values (p, h, t) take all simulated indi-
viduals who “passed through” this particular point on the state space and compute
the probability distribution over the population lifetime income quintiles. For
example, assuming that 100 individuals were observed in the cell (p, h, t), we com-
pute the fraction of these individuals who ended up in each of the lifetime income
quintiles. Because the income component p and health h are somewhat persistent,
this distribution is not uniform and thus informative about an individual’s likely
position in the lifetime income distribution.

This creates the mapping

QI : P ×H× {1, 2, . . . , Tr − 1} 7→ ∆4 (D.5)

where ∆4 is the 4-dimensional simplex that defines the PMF over lifetime income
quintiles.

5. For retired agents, income no longer fluctuates and is no longer health dependent,
so for them we need to keep track of their last health realization h just before
retirement to be able to map them into lifetime income quintiles. During the model
simulation (the one used to find the equilibrium, not the auxiliary one outlined
above), we therefore need to store agents’ health in their last year of working life,
hTr−1. Note that this does not add an additional state to the agent’s problem, but
only needs to be stored during the simulation to be able to apply the mapping QI .

D.1.3 Bequests left by parents

Since our intergenerational mapping works via the joint distribution over income quin-
tiles from Chetty et al. (2014), it is most convenient to characterize the equilibrium in
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terms of the aggregate bequests left by parents of age t∗ = t + T∗ who are in income
quintile q∗,

B(q∗, t∗) = E
[

b
∣∣∣ q∗, t∗

]
Pr ( q∗ | t∗ ) µt(t∗) (D.6)

where E
[

b
∣∣∣ q∗, t∗

]
is the average bequest left by an individual of age t∗ in income

quintile q∗, Pr ( q∗ | t∗ ) is the probability of being in that income quintile and µt(t∗) is
the mass of individuals aged t∗.

First, note that the probability of being in lifetime income quintile q∗ conditional on
age can be computed as

Pr ( q∗ | t∗ ) = ∑
p∗

∑
h∗

Pr ( q∗ | p∗, h∗, t∗ ) µp(p∗)µh(h∗ | t∗) (D.7)

where Pr ( q∗ | p∗, h∗, t∗ ) is given by the mapping (D.5).
Next we derive the average bequests left by parents conditional on their income

quintile and age. Because an agent’s lifetime income quintile does not enter the state
space, this expression can only be approximated using the probabilitistic mapping from
parental lifetime income quintiles to (p∗, h∗, t∗) as follows:

E
[

b
∣∣∣ q∗, t∗

]
=E

[
E
[

b
∣∣ p∗, h∗, q∗, t∗

] ∣∣∣ q∗, t∗
]

≈E
[

E
[

b
∣∣ p∗, h∗, t∗

] ∣∣∣ q∗, t∗
]

(D.8)

=∑
p∗

∑
h∗

Pr ( p∗ ∧ h∗ | q∗, t∗ )E
[

b
∣∣ p∗, h∗, t∗

]
(D.9)

The probability of observing (p∗, h∗) conditional on income quintile and age is not
directly part of our model, but can be computed from Bayes’ rule:

Pr ( p∗ ∧ h∗ | q∗, t∗ ) =
Pr ( q∗ | p∗, h∗, t∗ )Pr ( p∗ ∧ h∗ | t∗ )

Pr ( q∗ | t∗ )
(D.10)

where
Pr ( p∗ ∧ h∗ | t∗ ) = µp(p∗) µh(h∗ | t∗)

since persistent income is independent of health and age, and µp(•) is the PMF over
persistent income while µh(• | t∗) is the age-dependent PMF over health. In the absence
of heterogeneous mortality risk, the numerator Pr ( q∗ | t∗ ) in (D.10) would always be
20% since at each age, a fifth of the surviving cohort of households must be in any
given lifetime income quintile. However, because both mortality and lifetime income
are correlated with health, this need not hold here, as shown in (D.7).
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Note that the approximation in (D.8) arises because from the law of iterated expecta-
tions we have

E
[

b
∣∣ q∗, t∗

]
= E

[
E
[

b
∣∣ p∗, h∗, q∗, t∗

] ∣∣∣ q∗, t∗
]
̸= E

[
E
[

b
∣∣ p∗, h∗, t∗

] ∣∣∣ q∗, t∗
]

where the last two expressions need not be the same in general since (p∗, h∗, t∗) are
only an imperfect measure of q∗. We assume that they are sufficiently close since it is
computationally infeasible to include the lifetime income quintile in the state space of
an already very rich model, and thus the exact expression cannot be computed.

Finally, the average bequest left by the parent generation conditional on their state
(p∗, h∗, t∗) which enters (D.9) is given by

E
[

b
∣∣∣ p∗, h∗, t∗

]
=
(
1− πs

h∗t∗

)
∑

1b∗∈{0,1}
∑
η∗

µη(η∗)

{
Pr ( 1b∗ | p∗, h∗, t∗ )

×
∫

a
b′ (a, p∗, h∗, η∗, 1b∗, t∗) dΓ(a | p∗, h∗, η∗, 1b∗, t∗)

}
(D.11)

where b′ is the bequest left by a parent who dies at the end of the period, defined in
(D.3).

Note that the expression in (D.11) is not directly needed to find an equilibrium and
is only used to compute aggregate bequests in (D.6). For the equilibrium itself, we
only need to find a fixed point for B(q∗, t∗) which is a matrix of 5× 60 = 300 elements,
whereas the expectation in (D.11) can take on 5× 5× 60 = 1500 distinct values. See
section H for details.

D.1.4 Bequests received by children

The central quantities entering the equilibrium definition of the model are the bequests
left by parents B(q∗, t∗) from (D.6). In this section, we characterize how these are
distributed among children which in turn defines the conditional bequests received by
children b∗(p, h, t) which enters the household problem (D.2).

Consider the bequests left by parents in income quintile q∗ which need to be dis-
tributed among children of age t = t∗ − T∗ who can potentially have any combination
of permanent income and health (p, h). The probability that a child of such a parent is in
a particular state is

Pr ( p ∧ h | q∗, t∗ ) = ∑
q

Pr ( p ∧ h | q, t )Pr ( q | q∗ )
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where the probabilistic intergenerational income quintile linkages are given by Table D.1.
We again use Bayes’ rule to express Pr ( p ∧ h | q, t ) in terms of quantities we know,

Pr ( p ∧ h | q, t ) =
Pr ( q | p, h, t )Pr ( p ∧ h | t )

Pr ( q | t )

Because the probability to receive a bequest conditional on the parents’ death πb
pht also

depends on the child’s income quintile, bequests from B(q∗, t∗) are ultimately distributed
proportionally to

Pr ( p ∧ h ∧ b∗ > 0 | q∗, t∗ ) = ∑
q

Pr ( p ∧ h ∧ b∗ > 0 | q, t )Pr ( q | q∗ )

Note that the probability to receive bequests conditional on the parents’ death is inde-
pendent of (p, h) conditional on q, so that

Pr ( p ∧ h ∧ b∗ > 0 | q, t ) = Pr ( p ∧ h | q, t )Pr ( b∗ > 0 | q )

where we also use the assumption that, conditional on parental death, Pr ( b∗ > 0 | q )
is independent of the parents’ age. As described in section 4 in the main text, we
estimate the probabilites Pr ( b∗ > 0 | q ) for the five income quintiles using the Survey of
Consumer Finances.

It can be shown that the conditional bequest received by children is then given by the
expression

b∗(p, h, t) = ς(p, h, t) ·∑
q∗

B(q∗, t∗)
Pr ( p ∧ h ∧ b∗ > 0 | q∗, t∗ )

π
p
q∗

(D.12)

with
π

p
q∗ = Pr ( b∗ > 0 | q∗ ) = ∑

q
Pr ( b∗ > 0 | q )Pr ( q | q∗ )

being the average probability to receive a positive bequest conditional on parental death
among all children linked to parents in income quintile q∗. The scaling factor ς(p, h, t)
ensures that the bequests received by children are equal to the bequests left by parents
and is given by

ς(p, h, t) =
[(

1− πs
t∗

)
µt(t)µb(1b = 0 | t) µp(p) µh(h | t) πb

pht

]−1
(D.13)

which is the mass of children at (p, h) whose parents were alive at the beginning of the
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period and died at the end, and who receive a positive bequest. Since children can die
before their parents, there is a subtle distinction between the mass of parents alive and
the mass of children whose parents are still alive, where the latter is (weakly) smaller.
Denote by µb(1b = 1 | t) the fraction of a cohort with state 1b = 1. Since the mass of
children with 1b = 1 must be equal to the mass of parents whose children are still alive,
this fraction is implicitly defined by

µt(t)µb(1b = 0 | t) = µt(t∗)
µt(t)
µt(1)

=⇒ µb(1b = 0 | t) = µt(t∗)
µt(1)

(D.14)

where fraction of children alive is expressed as the cohort size aged t relative to the
cohort size at birth, µt(1).

As mentioned earlier, it is computationally infeasible to link children’s and parents’
health directly, hence we use the average parental survival probability at age t∗ in (D.13)
which was defined in (D.4).

D.1.5 Equilibrium

It is straightforward to show that if the bequests received by children are given by the
expression in (D.12), then the aggregate bequests received by cohort t, B∗(t), are equal
to the bequests left behind by their parent cohort, B(t∗):

B∗(t) ≡ µt(t)
µt(t∗)
µt(1)

(
1− πs

t∗

)
∑

p
∑
h

µp(p)µh(h | t)πb
phtb∗(p, h, t)

= ∑
p

∑
h

∑
q∗

B(q∗, t∗)
1

π
p
q∗

∑
q

Pr ( q | p, h, t ) µp(p)µh(h | t)
Pr ( q | t ) Pr ( b∗ > 0 | q )Pr ( q | q∗ )

= ∑
q∗

B(q∗, t∗)
1

π
p
q∗

∑
q

Pr ( b∗ > 0 | q )Pr ( q | q∗ )
Pr ( q | t ) ∑

p
∑
h

Pr ( q | p, h, t ) µp(p)µh(h | t)︸ ︷︷ ︸
=Pr( q | t )

= ∑
q∗

B(q∗, t∗)
1

π
p
q∗

∑
q

Pr ( b∗ > 0 | q )Pr ( q | q∗ )
Pr ( q | t ) Pr ( q | t )

= ∑
q∗

B(q∗, t∗)
1

π
p
q∗

∑
q

Pr ( b∗ > 0 | q )Pr ( q | q∗ )︸ ︷︷ ︸
=Pr( b∗>0 | q∗ )

= ∑
q∗

B(q∗, t∗)

= B(t∗)
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D.2 Social Security system

D.2.1 Retirement benefits

First, consider the following stylized version of the actual retirement income formula
used in the US social security system, where e is an (annualized) measure of historical
average monthly earnings, b$

1 and b$
2 are bend points in USD for some reference year,

and e$
max is the contribution and benefit base (CBB), i.e., the maximum earnings subject

to payroll taxes. Retirement income ι$ measured in USD is approximately given by

ι$(e) =


ρ1e if e ≤ b$

1

ρ1b$
1 + ρ2

(
e− b$

1

)
if b$

1 < e ≤ b$
2

ρ1b$
1 + ρ2

(
b$

2 − b$
1

)
+ ρ3

(
min

{
e$

max, e
}
− b$

2

)
else

(D.15)

where ρ1, ρ2 and ρ3 are decreasing replacement rates applied to earnings ranges brack-
eted by the bend points b$

i .
In the model, we define retirement income ι as the product of the following compo-

nents:
ιr(p) = w · yr(p) = w ·ωr · Rss(p) (D.16)

where we construct the functionRss(•) to mimic (D.15) but define it in terms of persistent
labor productivity p.

To this end, denote by e$
med the median earnings in dollars in the reference year 2000.

To express the bend points in terms of the persistent labor productivity, we implicitly
define a model bend point p∗i corresponding to b$

i by the relationship

b$
i

e$
med

=
w ωr p∗i
w ymed

i ∈ {1, 2}

That is, we normalize the dollar bend point b$
i by dollar median earnings e$

med and its
model counterpart by the median earnings in the model. Solving for p∗i , we obtain

p∗i =

(
b$

i /e$
med

)
ymed

ωr
.

Analogously, the CBB in terms of persistent labor productivity is

p∗max =

(
e$

max/e$
med

)
ymed

ωr
.
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By factoring out the common term w ·ωr that is independent of a retired individual’s
idiosyncratic state vector, we can write the replacement formula purely in terms of the
permanent labor state p as follows:

Rss(p) =


ρ1 p if p ≤ p∗1
ρ1 p∗1 + ρ2 (p− p∗1) if p∗1 < p ≤ p∗2
ρ1 p∗1 + ρ2 (p∗2 − p∗1) + ρ3

(
min

{
p∗max, p

}
− p∗2

)
else

Retirement income can then be computed as a function of p and the equilibrium wage w
according to (D.16).

D.2.2 Social security budget balance

Government expenditures on retirement benefits in each period are given by

Gss =
Nt

∑
t=Tr

∑
p

µt(t)µp(p)ιr(p) = Πr · w ·ωr · pr (D.17)

which is a weighted sum over the retirement incomes received by all retired cohorts,
with weights µt and µp denoting the PMFs of the ergodic distribution over age and
persistent labor productivity, respectively. We denote the mass of retired individuals by

Πr =
Nt

∑
t=Tr

µt(t)

and the average permanent component of retirement income after applying the replace-
ment rate function as

pr = ∑
p

µp(p)Rss(p).

Retirement income is fully financed by payroll taxes each period which are given by

Tss =
Tr−1

∑
t=1

∑
p

∑
h

∑
ϵ

µt(t)µp(p)µh(h, t)µϵ(ϵ)Tss (y)w (D.18)

where labor productivity of workers y = y(p, h, ϵ, t) is defined in (10), µh(h, t) is the age-
dependent distribution over health states and µϵ(ϵ) is the distribution over transitory
labor shocks. The payroll tax function is defined as

Tss (y) = τss ·min{ymax, y}
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where ymax are maximum taxable earnings, which we obtain from the dollar values
using

ymax =
(

e$
max/e$

med

)
ymed.

To balance the social security system, we need to find τss such that Gss = Tss. Equating
Gss = Tss implies that

τss =
Πr ωr pr

∑Tr−1
t=1 ∑p ∑h ∑ϵ µt(t)µp(p)µh(h, t)µϵ(ϵ)min {ymax, ωht p ϵ}

. (D.19)

D.3 Government budget

D.3.1 Expenditures

As described in the main text, the government makes means-tested lump-sum transfers
to individuals hit by substantial medical expenditures shocks to ensure a minimum
consumption level c as defined in (8). First, consider agents of age t ≥ Tr − 1, i.e., retired
individuals or those in the terminal period of their working life who will retire next
period, conditional on survival. The aggregate transfers to this group are given by

Ξr =
Nt

∑
t=Tr−1

∑
p

∑
h

∑
η

∑
1b∈{0,1}

µt(t)µp(p)µh(h, t)µη(η)µb(1b | t)πs
ht

×
∫

a
E
[
max

{
0, c + m

(
h′, η′, ν′, t + 1

)
− R · K (a, p, h, η, 1b, t)− ι(w, p)

− b∗(p′, h′, t + 1)
} ∣∣∣ h, η, 1b, t

]
dΓ(a|p, h, η, 1b, t) (D.20)

whereK (a, p, h, η, 1b, t) is the savings policy function and the after-tax retirement income
ι is defined in (5). Note that these government transfers are only paid to surviving
individuals with πs

ht denoting the survival probability for a given age and health state.
Second, the aggregate transfers to workers of age t < Tr − 1 are given by

Ξw =
Tr−2

∑
t=1

∑
p

∑
h

∑
η

∑
1b∈{0,1}

µt(t)µp(p)µh(h, t)µη(η)µb(1b | t)πs
ht

×
∫

a
E
[
max

{
0, c + m

(
h′, η′, ν′, t + 1

)
− R · K (a, p, h, η, 1b, t)

− ι(w, ωth+1, p′, ϵ′)− b∗(p′, h′, t + 1)
} ∣∣∣ p, h, η, 1b, t

]
dΓ(a|p, h, η, 1b, t)

(D.21)

where ι is the after-tax income of workers defined in (11). Compared to the retired
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individuals, we additionally need to take expectations over the next-period realizations
of persistent and transitory labor income shocks.

D.3.2 Estate tax revenues

The government taxes estates using the tax schedule Tb(•), defined as

Tb(x) =

0 if x ≤ χb

τb(x− χb) else
(D.22)

where χb is the maximum inheritance that is exempt from estate taxes and τb is the
marginal tax are on taxable estates. As described in the main text, individuals who die
at the beginning of the next period leave their savings Rk. Moreover, with a continuum
of individuals, there is positive mass of agents who die in the same period as their
parents. In this case we adopt the convention that older cohorts “die first” so that their
estates are passed on to their children and become part of the child’s estate. Finally, any
out-of-pocket medical expenditures incurred in their terminal period of life are deducted
(but children are not liable to pay any medical bills that exceed the inherited amount),
so that estates before taxes are given by

max
{

0, Rk + b∗(p′, h′, t + 1)−m
(
η′, ν′, t + 1

)}
.

Estate tax revenues are thus determined as

Testate =
Nt

∑
t=1

∑
p

∑
h

∑
η

∑
1b∈{0,1}

µt(t)µp(p)µh(h, t)µη(η)µb(1b | t) (1− πs
ht)

×
∫

a
E
[
max

{
0, R · K (a, p, h, η, 1b, t) + b∗(p′, h′, t + 1)

−m
(
η′, ν′, t + 1

)} ∣∣∣ p, η, 1b, t
]
dΓ(a|p, h, η, 1b, t) (D.23)

D.3.3 Income tax revenues

In this section, we derive an expression for the total amount of income taxes raised by
the government. Before proceeding, we state the following useful definitions: We denote
by p and ϵ the average persistent and transitory labor components in the economy,

p = ∑
p

µp(p)p ϵ = ∑
ϵ

µϵ(ϵ)ϵ (D.24)
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where µp(p) and µϵ(ϵ) are their respective PMFs,1 and by Πw the size of the labor force,

Πw =
Tr−1

∑
t=1

µt(t) = 1−Πr

Additionally, average labor productivity can be defined as

y = Π−1
w

[
Tr−1

∑
t

∑
p

∑
h

∑
ϵ

µt(t)µp(p)µh(h, t)µϵ(ϵ)ωht p ϵ

]

= Π−1
w

[
p ϵ

Tr−1

∑
t

∑
h

µt(t)µh(h, t)ωht

]
.

Now, consider the aggregate tax revenues raised from working individuals, which are
given by

Tw =
Tr−1

∑
t=1

∑
p

∑
h

∑
ϵ

µt(t)µp(p)µh(h, t)µϵ(ϵ)

{(
ωht p ϵ− Tss (ωht p ϵ)

)
w

− λ
[(

ωht p ϵ− Tss (ωht p ϵ)
)
w
]1−τ

}
=
[
wΠwy− λw1−τy−ss,τ

]
− Tss

where we define

y−ss,τ =
Tr−1

∑
t=1

∑
p

∑
h

∑
ϵ

µt(t)µp(p)µh(h, t)µϵ(ϵ)
(

ωht p ϵ− Tss (ωht p ϵ)
)1−τ

to simplify the notation. Income taxes raised from retired individuals amount to

Tr =
Nt

∑
t=Tr

∑
p

µt(t)µp(p)
[

w yr(p)− λ
(

w yr(p)
)1−τ

]

=
Nt

∑
t=Tr

∑
p

µt(t)µp(p)
[

w ωrRss(p)− λ
(

w ωrRss(p)
)1−τ

]
= Πr

[
wωr pr − λw1−τω1−τ

r pr,τ

]
= Tss − λΠrw1−τω1−τ

r pr,τ

1In the numerical implementation these shocks are rescaled so that p = ϵ = 1.
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with

pr,τ = ∑
p

µp(p)Rss(p)1−τ

Thus, the total revenue from income taxes is

Tinc = Tw + Tr = wΠwy− λw1−τ
[
y−ss,τ + Πr ω1−τ

r pr,τ

]
(D.25)

D.3.4 Government budget balance

Using the expenditure and tax components derived in the previous sections, government
budget balance requires that

G + Ξ = Testate + Tinc(λ) (D.26)

where non-discretionary government spending is

G = gY = g
w L

1− αk
,

which follows from the constant returns to scale production function and perfectly
competitive markets. The aggregate lump-sum transfers to households Ξ = Ξr + Ξw are
defined in (D.20) and (D.21), Testate is defined in (D.23) and Tinc is given in (D.25). This
equation implicitly defines the equilibrium λ which has to satisfy

λ =
wΠwy− G + Testate − Ξ

w1−τ
[
y−ss,τ + Πr ω1−τ

r pr,τ

] =
wL
(

1− g
1−αk

)
+ Testate − Ξ

w1−τ
[
y−ss,τ + Πr ω1−τ

r pr,τ

]
The second equality uses the fact that aggregate labor supply is L = Πwy, i.e., the size of
the labor force times average productivity.

D.4 Equilibrium definition

A recursive competitive equilibrium is given by a set of prices {R, w}, tax rates {τss, λ},
decision rules C (a, p, h, η, 1b, t) for consumption and K (a, p, h, η, 1b, t) for savings, the
aggregate bequest function B(q∗, t∗), and a stationary distribution Γ such that:

1. The decision rules solve the agents’ problem for all (a, p, h, η, 1b, t).
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2. Factor prices are given by:

r = FK(A, K, L)− δk and w = FL(A, K, L)

and gross returns on savings are R = 1 + r.

3. Capital and labor markets clear:

K =
∫
K (a, p, h, η, 1b, t)dΓ (D.27)

L =
Tr−1

∑
t=1

∑
p

∑
h

∑
ϵ

µt(t)µp(p)µh(h, t)µϵ(ϵ)ωht p ϵ

where µt(t), µh(h, t), µp(p) and µϵ(ϵ) are the ergodic distributions over age, health,
the persistent and the transitory labor shocks, respectively.

4. Payroll taxes τss are set according to (D.19) so that the Social Security budget is
balanced, Gss = Tss.

5. The equilibrium value of λ is implicitly defined by (D.25) so that the government
budget is balanced, gY + Ξ = Testate + Tinc(λ).

6. The distribution Γ over (a, p, h, η, 1b, t) is stationary.

7. The function B(q∗, t∗) is consistent with the after-tax estates left by agents aged t∗
in line with (D.6), (D.7) (D.9) and (D.11).

We discuss the numerical implementation of how to find this equilibrium in section H.
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E Calibration details

E.1 Health process for ages 20–50

We estimate the health transitions for nonblack men aged 20–50 using PSID data from
1984 (when the question about self-reported health was asked for the first time) up until
2019. During this period, the PSID was annual up until 1997, and thereafter biennial.
As explained in section 2.3, our estimator can handle arbitrary and varying transition
lengths and can thus estimate annual transition probabilities from such data. We assume
that survival is certain below the age of 50, thus we do not have to worry about the PSID
not recording deaths with the same precision as the HRS.

The resulting annual health transition probabilities for the ages 50–70, in other words,
those ages that overlap between HRS and PSID, are shown in Figure E.1. The results
indicate that the health transition probabilities are very similar across data sets.
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Figure E.1: One-year health transition probabilities for nonblack men. Shaded areas indicate
bootstrapped 95% confidence intervals.
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E.2 Ergodic distribution over age and health

Figure E.2 shows the relative cohort sizes and distribution of health states in the model,
where we rescale the cohort size of newborns to unity for the purpose of illustration.
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Figure E.2: Relative cohort size and health state distribution. Colors indicate the health state:
dark green is excellent while red is poor health.
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E.3 Life cycle profiles of labor earnings by health

To estimate labor income life cycle profiles by health we use PSID data, and restrict the
sample to nonblack men. We use survey years from 1992 (to be consistent with our
estimates from the HRS) up until 2019 (to increase the number of observations).

We use a total measure of labor earnings, including several components: wages
and salaries, separate reports of bonuses, overtime compensation, tips, commissions,
income from professional practice or trade, market gardening, additional job income,
and miscellaneous labor income.

Figure E.3 shows the resulting labor earnings profiles. Note that the profiles are not
conditional on having positive labor income. Thus, the lower profile for individuals in
poor health is partly due to lower income conditional on working, but also due to lower
participation. Among the individuals in poor health, 61 percent report zero labor income.
Among individuals in excellent health the corresponding figure is only 8 percent.

Since the quantitative model does not have an endogenous labor choice, this measure
of labor income captures the health effects on labor income on both the extensive and
the intensive margin. In the model we use a third-order polynomial approximation, as
shown in Figure E.3.
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Figure E.3: Labor earnings by health state, nonblack males. Dashed lines indicate raw (weighted)
averages by health and age. Solid lines indicate a fitted third-order polynomial,
which is what is used in the quantitative model. Colors indicate the health state: dark
green is excellent while red is poor health.
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E.4 Medical expenditure process

We follow French and Jones (2004) and De Nardi, French, and Jones (2010) and estimate
medical expenditures from the HRS which surveys all out-of-pocket expenses that
accrued since the previous wave (or over the two years preceding an interview if a
respondent was not surveyed in the previous wave). For deceased participants, medical
expenditures are collected as part of the exit interview.

Medical expenditure sub-components include out-of-pocket costs for hospital stays,
outpatient surgery, doctor and dentist visits, prescription drugs, home health services, as
well as special facilities and services. We exclude expenses for nursing homes since we
are interested in modeling medical expenditure risk, whereas nursing home expenses
are at least in part voluntary consumption choices.

The RAND version of the HRS contains imputations for missing medical expenditure
categories. However, these imputed values can be unreasonably large, so we drop any
imputed values from the analysis. Additionally, we winsorize each sub-component of
medical expenditures at the 99.5% level within five-year age bins to eliminate outliers.

We include individuals aged 50 and above for whom we have at least 5 observations
on medical expenditures in our estimation sample. No consistently measured data
is available prior to wave 3, so the initial two waves are excluded from the analysis.
Moreover, since we calibrate the economic model to nonblack men, we restrict the
sample to this group for a total of 5,754 individuals with 41,376 observations.

We impose that log medical expenditures follow a heteroskedastic process given by

log mit = αi + x′itβ + z′itγ + σ(xit) (ηit + νit) (E.1)

ηit = ρmηit−1 + ζit (E.2)

ζit
iid∼ N (0, σ2

ζ ) (E.3)

νit
iid∼ N (0, σ2

ν ) (E.4)

where xit contains a third-order polynomial in age, health, as well as health interacted
with age. Additionally, zit includes controls not present in the OLG model such as
marital status, education level, 5-year cohort dummies, and time fixed effects, as well as
interactions of these terms. We moreover control for the length of the reference period
since the distance between two consecutive interviews need not be two years (and can
be substantially shorter if a respondent dies shortly after an interview).

The variance of the error term uit ≡ σ(xit) (ηit + νit) is modeled via the skedastic
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function σ(•). For identification, we need to impose the normalization

Var ( ηit + νit ) = 1 ,

and we define

Var ( ηit ) = ϕ (E.5)

Var ( νit ) = 1− ϕ (E.6)

Var ( ζit ) = σ2
ζ = (1− ρ2)σ2

η = (1− ρ2)ϕ

where ϕ is a parameter governing the share of variance attributed to the persistent
component η. The term ηit + νit is scaled by σ(xit; δ) which is a function of covariates
xit, parametrized by the vector δ, so that the variance and the lag-k auto-covariance are
given by

Var ( uit | xit; θ ) = σ2(xit) = ex′itδ (E.7)

Cov (uit, uit−k | xit, xit−k; θ) =
√

σ2(xit)
√

σ2(xit−k)ρ
k
mϕ (E.8)

where θ =
(
ρm, ϕ, δ

)
∈ RKθ is the parameter vector to be estimated.

We estimate the coefficient vector β of the mean equation with a standard fixed-effects
estimator and use the residuals to estimate the parameters θ via GMM where we include
lags of up to 10 years in the covariance moment conditions. We find that medical
expenditures shocks are quite persistent with ρm = 0.836, while the share of variance
attributed to the persistent component is ϕ = 0.609 at a two-year frequency. The details
are shown in Table E.1.

To get some intuition for the moments matched by the GMM estimator, Figure E.4
contrasts the sample means of log medical expenditures by age with the predicted values
for nonblack men. The gray bubbles represent the (weighted) raw data means whereas
the pink bubbles correct for covariates z not present in the OLG model (we assume that

Parameter Estimate 95% Confidence interval

ρm 0.836 [0.820, 0.850]
ϕ 0.609 [0.583, 0.632]

σ2
ζ 0.184 [0.164, 0.205]

σ2
ν 0.391 [0.368, 0.417]

Table E.1: Parameter estimates for the medical expenditure shock process at two-year frequency.
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Figure E.4: Log medical expenditures vs. predicted values for nonblack men. Grey data points
show raw average log medical expenditures by age, while the pink data points
control for marital status, cohort, education, and year. Shaded areas indicate 95%
confidence intervals.

the reference category is an unmarried man with high school education who was born
in 1920–1924). Figure E.5 plots the analogous graphs for the variance of log medical
expenditures, where the data moments are given by the average squared residuals by
age. Finally, Figure E.6 shows the covariances for lags of up to 20 years observed in the
data and their model counterparts.2 In general, the model predicts that both the mean
and variance of log medical expenditures are increasing in age, with the exception of
very high age where the log mean is decreasing.

2To reduce clutter, the graph shows the covariance at the age of 70. As can be seen from (E.8), the lag-k
covariance is a function of both xit and xit−k, so the model predictions in the plot need to be weighted
by the sample distribution of xit−k for any fixed xit.

53



0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Va
ri

an
ce

 o
f l

og
 m

ed
ex

Data (controls)
Predicted

Health: Excellent Health: Very good

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Va
ri

an
ce

 o
f l

og
 m

ed
ex

Health: Good Health: Fair

50 60 70 80 90 100
Age

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Va
ri

an
ce

 o
f l

og
 m

ed
ex

Health: Poor

50 60 70 80 90 100
Age

Dead

Figure E.5: Squared residuals of log medical expenditures vs. predicted variance for nonblack
men. Data points show average squared residuals by age. Shaded areas indicate 95%
confidence intervals.

Since the HRS data is mostly biennial but the OLG model is calibrated to annual
frequency, we use a simulated method of moments (SMM) algorithm to convert the
biennial parameter estimates to their annual counterparts. To do this, we assume that
annual log medical expenditures follow exactly the same process as laid out in (E.1) to
(E.8), but we allow the parameters to differ. For a given guess of the annual parameter
vector, we simulate a cross-section of 100,000 individuals for up to 20 years, using
health transitions and survival probabilities from the objective health/survival model
discussed in the main text. We then aggregate annual medical expenditures to two-
year observations, compute the implied two-year moments and compare these to our
biennial estimates. Our SMM algorithm minimizes the distance between these two sets
of moments. We obtain ρm = 0.920 and ϕ = 0.543 as our annual estimates. The shock
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Figure E.6: Covariances of log medical expenditures vs. predicted covariance at age 70. Model
predictions are weighted by the empirical distribution of covariates at each lag.
Shaded areas indicate 95% confidence intervals.

variances at annual frequency are therefore given by σ2
ζ = 0.083 and σ2

ν = 0.457 which
we use to discretize the persistent and transitory medical expenditure shocks in the OLG
model.
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F Additional model results

F.1 Discount rates

De Nardi, Pashchenko, and Porapakkarm (2017) (henceforth DPP) estimate that individ-
uals in bad health on average have a higher discount rate (i.e., are more impatient) than
individuals in good health. The subjective beliefs about life expectancy we document in
this paper provides one plausible explanation behind this pattern. In this section we,
compare the magnitudes of our respective estimates.

In DPP, individuals differ ex-ante in their patience and health type. The discount
factor can take two values, βlow = 0.877 or βhigh = 0.992. The health type can take three
values, ηi ∈ {η1, η2, η3}. Individuals with “lower” health type have a higher probability
of being in bad health (due to both higher probability of transitioning to bad health, and
higher probability of staying in bad health once there). DPP estimate a strong correlation
between discount factor and health type: the fraction of impatient people (with discount
factor βlow) among those with health type η1 or η2 is about 80%, while the fraction among
those with the best health type (η3) is slightly less than 40%. The average discount factors
among the η1- and η2-types is 0.90 and the average among the η3-type is 0.95.

It is difficult to make a fair comparison between DPP’s estimates and our effective
discount factor heterogeneity due to subjective survival beliefs. In DPP, the discount
factor is an ex-ante fixed characteristic, while in our model, the effective discount rate of
an individual is changing over time as the health state evolves. Moreover, the health
types in DPP do not match one-to-one with the observed health state. Nevertheless, to
give an idea, we do the following: we define the “subjective discount rate addition” as the
difference between the subjective discount rate and the objective discount rate. This is a
measure of the discount factor heterogeneity due to subjective survival beliefs.

In Figure F.1 we plot this “subjective discount rate addition” for ages 50 and 70 for differ-
ent time horizons. As can be seen, at the age of 50 the difference between individuals
in excellent and poor health is substantial, more than 10 percent on a one or two year
horizon. At a 10-year horizon, the difference is 5 percent, and at all horizons, individuals
in bad health have a higher difference between their subjective and objective discount
rate. Thus, our results are well in line with the magnitudes estimated by DPP.

F.2 Policy functions

Figure F.2 shows the average savings policy functions for selected ages for the model
with objective survival heterogeneity (OSH). Since we cannot plot the full six dimensions
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Figure F.1: Subjective discount rate addition. Difference between subjective and objective dis-
count rate as a function of current age (50 or 70) and forecast horizon (on the x-axis).
Colors indicate the health state: dark green is excellent while red is poor health.

of the idiosyncratic state space, we average out the states of lesser interest, namely labor
productivity, persistent medical expenditures, and the bequest indicator, using the
corresponding stationary distribution in equilibrium. Some of the non-smoothness in
these policy functions is due to this averaging, while the remainder arises because even
the disaggregated policy functions are discountinuous, as discussed in section H.

Panel (a) depicts how much an agent saves as a function of current cash-at-hand,
while panel (b) shows how much the agent saves as a fraction of current cash-at-hand.

Figure F.3 shows the same information from the model with subjective survival
heterogeneity (SSH), where we average out labor and medical expenditure heterogeneity
using the stationary distribution of the SSH economy.
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(b) Total savings rate (defined as fraction of total cash-at-hand saved to next period).

Figure F.2: Policy functions for the model with objective survival heterogeneity (OSH) by age,
health and cash-at-hand, with remaining state variables averaged out. Colors indicate
the health state: dark green is excellent while red is poor health.
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Figure F.3: Policy functions for the model with subjective survival heterogeneity (SSH) by age,
health and cash-at-hand, with remaining state variables averaged out. Colors indicate
the health state: dark green is excellent while red is poor health.
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G Model with an active bequest motive

G.1 A two-period model

In this section, we illustrate how the introduction of a warm-glow bequest motive can
have ambiguous affects on savings. To build intuition, we consider a simple two-period
model with a bequest motive where the only uncertainty is survival risk. The survival
probability between the first and second period is denoted by π. After the second period,
the agent dies with certainty. We assume that the agent has some initial assets a1, the
discount factor is β < 1, and the gross interest rate is R. There is no income in the second
period, thus it is a simple cake-eating problem. The agent solves

V(a1) = max
c1, c2, a2, a3

{
u(c1) + β

(
π
[
u(c2) + βVb(a3)

]
+ (1− π)Vb(a2)

)}
(G.1)

subject to the usual non-negativity restrictions and the budget constraints

a2 = a1 − c1, a3 = Ra2 − c2.

The first-order conditions are given by

u′(c1) = βπRu′(c2) + β(1− π)V ′b(a2)

u′(c2) = βV ′b(a3).

Let the utility function u(•) take the usual CRRA functional form,

u(c) =
c1−σ − 1

1− σ

and let Vb(•) take the standard warm-glow bequest motive form as in De Nardi (2004),

Vb(a) = ϕ1
(a + ϕ2)1−σ − 1

1− σ
(G.2)

where ϕ1 determines the strength of the bequest motive, and ϕ2 determines to what
extent bequests are a luxury good. For simplicity, we assume ϕ2 = 0 and solve for the
agent’s problem as given in (G.1). Some algebra shows that whether an increase in the
survival probability makes the agent consume more or less in the first period (the sign

60



of ∂c∗0
∂π ) depends on the strength of the bequest motive, more precisely by the relationship

ϕ1 ⋚

(
R

1−σ
σ

1− R
1−σ

σ β1/σ

)σ

≡ ϕ̂1. (G.3)

If ϕ1 < ϕ̂1, an increase in the survival probability makes the agent consume less in the
current period and save more given that it is optimal to transfer more resources to the
next period since the probability to still be alive increases.

On the other hand, if the weight on the bequest motive is large, ϕ1 > ϕ̂1, an increase
in the survival probability leads to decreased savings and more consumption in the first
period. There are two mechanisms behind this. First, when the probability of surviving
increases, the effective discounting of the next-period bequest utility increases, and hence
the incentive to save decreases. We call this the expected-date-of-handover channel.
Second, an increase in the survival probability leads to a higher expected interest rate
income over the remaining life, and therefore the agent can afford more consumption
also in the first period. We call this channel the income effect. If the weight on the
bequest motive is high, these two effects dominate the effect of wanting to save for a
longer expected life.

In the example above, we assumed ϕ2 = 0. It can be shown that if R = 1, the sign
of ∂c∗0

∂π is independent of ϕ2 (although it still affects the level of savings). However, if
we allow for a positive interest rate, the extent to which the bequest is a luxury good
in combination with the level of initial assets a0 matters. Moreover, we assumed no
second-period income in our example above. If we allow for income in the second
period, the level of income compared to the initial assets affects the incentives. For a
given a0, the higher the second-period income, the lower is the bequest weight needed
to get ∂c∗0

∂π > 0 since then the bequest becomes relatively more important as a reason to
save.

G.2 Calibration of the bequest motive

As discussed in the main text, for the model with a warm-glow bequest motive we target
a capital-output ratio of 3 and a fraction of taxable estates of 2% as in the benchmark
model. In addition, we attempt to match the relative decumulation of assets at higher
ages relative to median asset holdings at ages 55. The latter moments and their data
counterparts are shown in Table G.1. Some aspects of our model are too simplistic
to match the data moments exactly. For example, because we impose an exogenous
retirement age of 65, the life cycle profile of assets peaks exactly at this age, whereas this
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Median asset holdings

Age 60 65 70 75 80 85

Data 1.05 1.09 1.13 1.16 1.18 1.17
Model 1.44 1.77 1.52 1.32 1.17 1.07

Table G.1: Life cycle asset profile in the model with a bequest motive, relative to the median
asset holdings at age 55.

is not the case in the data.
To assess the magnitude of bequests in the model, it is informative to look at non-

targeted moments. The bequest-to-wealth ratio in the model is 2.3%. It is difficult to
precisely measure this figure in the data, but according to Gale and Scholz (1994), using
SCF data, it should be closer to 0.9%. However, according to others, 2% is “a conservative
estimate”.3 Another measure is estate tax revenue as a fraction of GDP. In the model,
this figure is 0.02%. In the US, this figure varied during the last few years, from a high of
0.17% in 2007 to a low of 0.07% in 2011.4 The model cannot replicate these magnitudes
since it is unable to generate the right tail of the wealth distribution and hence also lacks
the estates left behind by the richest. In sum, the magnitude of bequests left in the model
seems to be roughly in line with the data.

3See Larry Summer’s opinion at https://www.reuters.com/article/column-summers/column-how-to-
target-untaxed-wealth-lawrence-summers-idUSL1E8NG2MC20121216?irpc=932.

4Calculated as the ratio of net estate taxes paid, as reported by the IRS, and official GDP figures.
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H Computational appendix

H.1 The agent’s problem

Solving the agent’s problem is complicated by two factors:

1. The number of dimensions of the idiosyncratic state space requires us to solve the
agent’s problem on about 3.5 million grid points (see Table H.1 for the individual
grid sizes).

Dimension Size

Individual state space
Cash-at-hand 200
Age 90
Health 5
Bequest indicator 2
Persistent labor productivity 5
Persistent medical expenditures 7

Total number of grid points 3,425,000

Transitory shocks
Labor productivity 3
Medical expenditures 5

Table H.1: Grid dimensions for the agent’s problem

Note that the total number of grid points is not the product of individual grid
dimensions because the state space is not rectangular. For example, agents below
the age of 50 do not face medical expenditure shocks, while agents above the age
of 89 cannot receive bequests since their parents are no longer alive.

2. Introducing a consumption floor and/or a bequest motive combined with poten-
tially large medical expenditure shocks leads to consumption policy functions with
downward jumps and value functions that are not concave. Standard methods
that either rely on the concavity and differentiability of the value function or on
the monotonicity of the consumption policy function (such as the endogenous
gridpoint method, EGM) are therefore not applicable.

To illustrate, in Figure H.1 we plot the consumption policy, the savings rate and value
function for the model with subjective beliefs, solved on a larger cash-at-hand grid of
500 points to more clearly bring out any discontinuities. Consider an individual at
age 80 who is in the worst health and productivity states and faces the most severe
persistent medical expenditure risk, a point on the state space where these problems are
particularly pronounced.
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Figure H.1: Solution to the agent’s problem for an individual aged 80 in the worst health and
productivity state who is facing the highest medical expenditure risk. Markers
indicate the cash-at-hand grid points.

Panel (a) shows the optimal consumption choice. Below the consumption floor of
c = 0.05, the agent consumes the consumption floor amount and does not save by
assumption. However, even above the consumption floor, this individual does not save
until a cash-at-hand level a of about 0.2 because any savings k ∈ (0, a) will be wiped out
by even the smallest realization of medical expenditures next period. Thus the agent
would be back at the consumption floor next period, the same outcome as if nothing had
been saved. Hence positive savings are suboptimal in that region.

For higher cash-at-hand levels a, the agent can choose a sufficiently high savings level
k ≤ a so that some savings remain as long as the medical expenditure shock realization
is small. This introduces a downward jump in the consumption policy because saving
only makes sense if some minimum amount is saved, as otherwise everything will be
wiped out by medical expenditure shocks. A similar logic generates the downward

64



jumps at higher levels of a shown in (a): an even higher minimum level needs so be
saved so that some wealth is left when the two lowest possible medical expenditure
shocks realize, and so on.

The consumption floor and downward jumps in consumption moveover break the
concavity of the value function, as shown in panel (c). In the region below the con-
sumption floor, the value function is in fact flat because the agent will consume c in
each period and will never be able to save out of that region. The value function is
thus constant for sufficiently low levels of cash-at-hand. Additionally, as is well known,
downward jumps in consumption correspond to downward kinks in the value function,
as is barely visible at the cash-at-hand of around 0.35. Consequently, the value function
is neither globally concave nor differentiable.

Note that this phenomenon is even more pronounced in the model with a warm-glow
bequest motive because the same logic applies to bequests: estates are passed on net
of medical expenditures incurred in the last year of life but are bounded by zero from
below. Therefore, the incentive to leave bequest depends on whether the estate is wholly
or partially wiped out by medical expenses.

While there are extensions of the EGM algorithm to deal with downward jumps in
consumption policy functions, these are usually designed to address discontinuities
introduced by an additional binary discrete choice (such as retirement) and often ac-
companied by extreme-value distributed taste shocks to smooth out the resulting kinks
in the value function. In our setting, these jumps are much more frequent (because of
the discrete nature of medical expenditure shocks, with as many as 7× 5 = 35 possible
realizations), and adding taste shocks makes no sense in our setting (since we are not
dealing with discrete choices). We therefore opt to do the most conservative but robust
algorithm and solve the agent’s problem using grid search.

Grid search is know to create very jumpy consumption rules even for high values
of cash-at-hand, introducing artificial discontinuities that are solely an artifact of the
solution algorithm. We alleviate this issue by constructing the savings grid as follows:

1. For each point (a, p, h, η, 1b, t), we create a candidate grid of savings levels that
is centered around the optimal savings level k−1 found in the previous iteration
and covers an interval of approximately ± 0.15 k−1

a . Since the agent’s problem
is computed many times when solving for the equilibrium, such a point always
exists except for the very first iteration, where we simply create a candidate grid
covering the feasible space [0, a].

2. The savings grid we create is much denser close to the previous savings level k−1
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and more sparse towards the boundaries of the interval ± 0.15 k−1
a .

Constructing the candidate savings grid this way creates remarkably smooth savings and
consumption policy functions for higher cash-at-hand levels where the purely artificial
downward jumps are not present, as can be seen in Figure F.3.

H.2 Equilibrium

To find a steady-state equilibrium defined in section D.4, we need to find fixed points in
terms of

1. The aggregate capital stock K (or the equilibrium interest rate r);

2. The tax level λ.

3. The equilibrium wage rate which we pin to w = 1 by finding the corresponding
TFP level A. This is only relevant for the benchmark models with subjective beliefs
as we keep the TFP level unchanged when solving the models with objective
survival beliefs (OSH) or no health heterogeneity (NHH).

4. The function B(q∗, t∗) characterizing after-tax estates left by parents in lifetime
income quintile q∗ who die at age t∗.

To find the fixed point in terms of 1–3, we use the multidimensional root-finder known
as Broyden’s “good method” (Broyden 1965) to locate a root in terms of

1. Excess demand for capital (determining the equilibrium r);

2. The government budget balance (determining λ); and

3. “Excess” wages w− 1 (fixing w = 1).

Having to additionally find a fixed point in terms of B(q∗, t∗) introduces a substantial
complication as B(q∗, t∗) ∈ R5×60

+ is a matrix of 5× 60 = 300 elements for five income
quintiles and 60 years of generational overlap between parents and children. We found it
infeasible to add these additional 300 elements to the root-finder, and instead we devised
the following algorithm:

1: ▷ Initial guess: ◁

2: (K1, λ1, A1)← (Kguess, λguess, Aguess)

3: B1(q∗, t∗)← 0[5×60]

4: ▷ Outer loop: Broyden’s root-finding algorithm ◁
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5: repeat
6: ri ← αFK(Ai, Ki, L)− δk, wi ← (1− α)FL(Ai, Ki, L)
7: ▷ Initial guess for inner loop ◁

8: Bi,1(q∗, t∗)← Bi(q∗, t∗)
9: ▷ Inner loop: Fixed point of B(q∗, t∗) for given (Ki, λi, Ai) ◁

10: repeat
11: bi,j(p, h, t)← from Bi,j using (D.12)

12:
{
Ci,j (a, p, h, η, 1b, t) , Ki,j (a, p, h, η, 1b, t)

}
← solve agent’s problem

13: Γi,j ← simulate economy
14: Bi,j+1(q∗, t∗)← (D.6), (D.7), (D.9), (D.11)
15: until

∥∥Bi,j − Bi,j+1
∥∥

∞ < ϵB

16: Ki+1 ← (D.27)
17: ▷ Government budget deficit ◁

18: ∆← G + Ξ− Testate − Tinc(λ) from (D.26)
19: until

∥∥∥(Ki−Ki+1
Ki

, ∆, wi − 1
)∥∥∥

2
< ϵ

The outer loop on lines 5–19 represents Broyden’s root-finder which iterates over
candidate values of (Ki, λi, Ai), starting from some initial guess. It is sufficient to
initialize aggregate bequests to a zero matrix 0[5×60] since it would be hard to come up
with a good guess anyhow.

For given (Ki, λi, Ai), the inner loop on lines 10–15 finds a fixed point in terms of the
bequest function B(q∗, t∗). To this end, we compute the inheritances b(p, h, t) expected
by agents, solve the agent’s problem and simulate the economy. We use the simulated
distribution to update the amount of after-tax estates B(q∗, t∗) and iterate on this inner
loop until these are numerically close to the input value. Note that the agent’s problem
needs to be solved in each iteration of the inner loop (since the expected bequests
potentially change) which is computationally very costly. However, it is sufficient to
re-solve the problem only for agents in state 1b = 1, as expected bequests have no effect
on the decisions of agents whose parents are no longer alive.
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