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In recent years, it has become common practice to augment macroeconomic
models that include discrete choices with taste shocks to smooth out kinks and non-
differentiabilities. This note derives the expressions for expected utility and choice
probabilities for binary and multinomial choices models with taste shocks. Deriva-
tives of expected values are provided which are required to for numerical solution
methods. Additionally, common pitfalls arising in numerical implementations are

discussed.
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1 Binary choice model

1.1 Expected value without distributional assumptions

We consider a discrete choice problem between two alternatives indexed by i € {1,2}.
Let x be a household’s state vector, and V;(x) the value function when choosing alterna-
tive 7 at state x. We assume there is an additive alternative-specific draw €; which is i.i.d.



and independent of x such that the household’s utility after the realization of €; is

V(x) = mf‘X{Vi (x) +e

ie{Lz}}.
We are interested in computing two objects: the expected value function
EV (x) = B[ max{Vi (x) +e1, Vo (x) + €2} | , (1)
and the probability that alternative i will be chosen,
7@:Pr04@y+qzxcm@+f4> )

where we adopt the usual notation that when one choice is indexed by i, the other
remaining alternative is denoted by —i.! In the remainder of the document, we drop the
explicit dependence on x and write V; instead of V; (x).

The expectation in (1) can be written as follows:

EV (x) = [max{Vl—l—el, VZ—I—GQH
:Eh@%ﬂm+qzw+qhw4m+qzw+q)
+Eh@+ﬁw+q>m+qyw4w+q>m+q) 3)

Let A; = V; — V_; be the difference in value functions before the shock realization.

Denote the CDF of ¢; by Fe (e | 4;,0 ) and its PDF by f. (e | y#;,0 ), and assume that its

support is [, €], where either of them is permitted to be infinite. Note that we assume a

common scale parameter ¢, but allow for alternative-specific location parameters ;.
First, consider the probability of choosing alternative i: we have that

Pr<Vi+6i2 V,,-+e,i) :Pr(Ai—l—eize,i)

A+e,
[ (e—i|pu—i )dG—i] fe (€| pi, o) de;

Fe(Ai+eilpio) fe (€| pi o) de (4)

Il
\\ |

IWe assume that the € are continuous random variables, so it makes no difference whether we use a weak
or strict inequality sign in (2).



Next, the conditional expectation in (3) can be written as

E[Vi—kei Vi+ei2V,i+e,i]
:E[‘/i+€i Ai+€i2€7i]
€ pAite; . . . .
_ / V; +€i)f€ (e—i|p—i o) fe (&i] ‘ul'(f)de,idei
e Je Tti
1 € Aj+€;
— [ [ Al ns o ded] fteil o) de
T Je €
1 e
= o [ (Vi e)B (8t el i) fo e ) dey
1
=V:i+ ;/ €iFe (Ai+€i|p_i,0) fe (€| pi,0)de;
Therefore, we find that
E [‘/i+€i Vi+e > V—i‘}'e—i} X PI‘(Vi—i-GZ‘ > V—i+€—i>

€
= Vit [ eife (A + el i) fe e | o o) de
€

and the “upper envelope” in (1) is consequently given by

€
EV =mV; +7‘C2V2+/ e1Fe (Vl —V2+€1|]/l2,0')f€ (61‘]/{1,0)6161
€

3
~|—/ eFe (Vo —Vi+ex|m,0) fe (€| pa, o) der
€

1.2 Type-I extreme value distribution

We now make specific assumptions on the taste shock distribution and let ¢; be draws
from the type-I extreme value (or Gumbel) distribution with location parameter y €
(—o0,00) and scale parameter ¢ > 0. Note that the Gumbel distribution has support on
R. The CDF F, and PDF f, are given by

Fe (x|p,0) =e><p{—e><p(—(x—u)/0)} (5)

ety = pew{ = (2 —exp(~(x =)o) | ©

We are interested in evaluating the expression Fc (A; +€; | pi—i, o) fe (€i | pti, o) which




in the case of the Gumbel distribution is
Fe(Ai+e€ilp—i o) fe (€| pio)

= exp{_ei(A"Jre"*V"')/U} X }Texp {— (ﬂ;lh) — e(éiw)/tf}
— lexp {_ <€l_‘ul> _ e—(A,--H—ZZ‘—]J,,')/O’ . e—(ei—yi)/g}
o o

= Lo { - (1) ertemmve [ emtaanre] |
o (%

where we define Ay; = p; — p_;. Let a; denote the term
txl = 1 _|_ e_(Ai""Al’li)/ff
Then, continuing with the last line above, we have

Fe(Ai+ei|piyo) fe (ei | pi, o)

— 1 exp {_ (el_l’ll> _ e(e,'],{i)/(flxi}
o o

— 1 exp {_ (61—]11) _ e(e,']li)/(feloga,-}
o oy

_ 1 exp {_ (61 - I’ll ;Ulogal) _ logﬂél _ e—(ei—}li—U’IOgﬂél‘)/U’}

L e {_ (ez—?‘z) _ e(efﬁi)/a}
T o

1 ~
Zaxﬂ@WW)

where we define
fi = pi+ologa; = u; + olog (1 + e*(A’*A"")/‘T)

and fc (e | i;, o) is the Gumbel PDF with location parameter ji; and scale parameter ¢
We are now ready to revisit the generic ex-ante probability of choosing alternative i in
(4), applying the Gumbel-specific expression derived above:

3 | A )
T = / Fe(Ai+e€i|pi,o) fe(ei| ni,o)de; = Z/ fe (€| iz, o) de; = "
e ;e l
_ 1
1+e” ((ViJF}‘i)*(V—hLﬂ_,-)) /o
g(Vz‘"‘.ui)/tT

eVitui)/o + e(Voitu_i)/o



We see that the probability of choosing alternative i is the usual expression from the
Logit model. Using the result 71; = ocl._l, we can also rewrite the location parameter ji; as

ii = pi —ologm;

Turning to the expected value EV, we need to evaluate the expected value of the
“modified” Gumbel distribution

/ €iFc (Ai+ei|p_i o) fe(ei|pi,o)de
€

— ;i eeeife (ei| 71, 0)de; = m; [ﬁl + 0”)/} =7 {yi —olog m; + a'y} (7)
where 7 &~ 0.57721 is the Euler-Mascheroni constant. Consequently,
EV=mVi+mVh+m (yl —ologm + (T'y) + 71 (yz —ologm + a'y)
Note that
o log ;= Mo [1og (e<vl-+m>/a) —log (emwi)/a n e(vﬂ-wﬂ-)/a)}

= Vi + mp; — mio log (e(v"ﬂ"')/” + e(V*"”‘*")/")
Thus the above expression can be simplified to

EV = olog (e(vlﬂ“)/" + e(V2+”2)/”> + 0oy

= vlog (eyz/a (e(Vﬁ-Ay])/a n eVQ/U)) + oy

=olog (e(V1+A"1)/” + eV"-/‘7> +p2+ oy

where Ay = py — pa as before, and we also use the fact that 71y = 1 — 7p. Note that if
u1 = pp and thus Ay = 0, this expression simplifies to the more familiar

EV = olog (/7 +e"/7) + i+ oy

2 Multinomial choice model

2.1 Expected value without distributional assumptions

Consider now the generalization to n > 2 alternatives. Then the value function is given
by
V(x) = max{Vi (x) + €
1

ic {1,...,n}}

and its expectation over taste shock realizations is

EV (x) =E [max{Vl (x)+e1, ..., Vul(x) +€”H



with the the probability that alternative i will be chosen given by
i = Pr (Vi(x)+ei Zr?;}{‘/ﬁef})
The expectation above can be written as follows:
EV (x) =E [max{% +€1,..., Vy —|—€n}}

:ZE I:Vi—|-€i
i

W+ei2m£x{w+ej}} ><Pr(Vz-+ei2m72x{Vj+ej})
j#i j#

We proceed in exactly same fashion as above and let Aj; = V; — Vj, and fe (o | p,0)
be the joint PDF of taste shocks (g, ..., €,) where pu is the vector of location parameters
= (y1,...,1n) allowed to differ across €;, and ¢ is the common scale parameter. The
probability of choosing alternative i can then be written as

ni:Pr<Vi+ei2m£x{Vj+ej}>
] 1

=Pr (Aij +€ > n%?lx {ej} > (8)

— Pr (Q{Aij—i—ei >ej})

€ rlApte; Ajyte;
/ / / fe(€1,...,€qx|p,0)der---dey,
€ €

€ rApte; Ajn+ei
L [ Rl o) S e a0 den - de

m
m

Il
o

) [HFe (Dij+€i ij‘f)] fe (€| i, o) de 9)
i

where we again use

A1j+€,‘
/e fe (ej | uj, o) dej = Fe (Aij +ei | pj, o)

This is the multivariate analogue of (4). Next, the conditional expectation of alternative i



is
E |:Vi+€i) Vi+€i2mi_x{vj+€j}}
] 1

1 € rApte; Aip+e;
:f/ / / (Vit &) feler,... en|p o) der - dey
T Je Je ¢

1 €
=— | (Vit+e) |]]F (Aij+€i|,uj/(7)]fe (ei| pi, o) de
toe j#i
= V+ : el [HFe (Aij+€i | wj, o )] fe (ei | pi, o) de;
€ L#

2.2 Type-I extreme value distribution

As in the binary case, we now turn to the specific case when all ¢; follow the Gumbel
distribution with CDF (5) and PDF given in (6). To compute expectations, we need to
find an expression for

[I;Fe (A + e VW)] fe (ei| i)
J#

for the Gumbel case:

[HFS (A + €] P‘ﬁ")] fe (€i | pi, o)

j#i
1 €
Aii—uj) /o - I S R R W (O T
[”exp{ i }]XUexp{ ( = > e }

J#i

_ (Aji+ei—p;) (ST H  —(e—pi) /o
o eXp { L } P { ( o > ‘ }
j#i
e 1 exp {_e_(ei_l/li)/g Ze_(All+(Hl_}l]))/0—} exp {_ <€l_‘ul> — e—(ei—ﬂi)/g}
7 i 7

_1 (&G H (e~ /o) —(Qij+Apij) /o
—Uexp{ < = > e 1+ ) e (Bt A

j#i
Here we use the definition Ay;; = p; — pj. As in the binary case, we introduce the
definition

1 + Ze A1]+A,u1] ] Ee A,]+A]/lz]

i7i



such that we can continue simplifying the above expression:

[1;[1“ (A +e Vﬂ)] fe (ei | iy o)
j#i

= 1 exp {— (H) - e(eiyi)/g)ﬂéi}
o (%

_ %exp {_ (61’ — Ui — O'IOngi> B logtxi . e—(ei—y,»)/a)elogtxi}

o
1 € — ui —ologua; —(e—p—0low @
— - o 1 . ,—(ei—pi—ologa;)/o)
Uexp{ ( 5 ogu; —e
— 1l {_ <€—ﬁ) _e(e,-ﬁ»/a)}
n o
1

:Djixfe(ei’ﬂi/(f)

Here we have defined ji; as

i = pi+ologa; = i+ olog [2(””””]’””]
j

We consequently get an expression that is identical to the binary case except for the
different definition of a; (and hence ji;). Thus the probability of choosing alternative i in
(9) for the Gumbel case simplifies to

/. [E[FE By +e] ’*f”f)] feleilma) = [ felailfno)de= -
]7t i J—o0 ;

and hence

-1
1
= - _ [26—(%‘4‘&41‘;)/‘7] —
; -
]

This of course is the expression for the probability of choosing alternative i in the
multinomial Logit model. The modified location parameter ji; can be alternatively
written as

! Vitpi)/o
Ze—m-wm—m)w] el (10)

j

— 42]‘ e(Vj+;4j)/a

i =i +ologa; = p;+ologm, ' = p; — olog m;
Next, we obtain the following expression for the expected value of €; conditional on i
being the alternative with the highest value:

€ 1 0 R
/ €i [HFe (Aij+€‘ﬂjr‘7)] fe(eifﬂi/‘f):;/ €ife (€i | i, ) de;
< LA pemee

= 7 [ﬁl + 07} =T {yi —olog m; + a'y}



which is identical to the binary-choice case in (7). Using these results, the expected value
function is given by

EV = Zm[Vﬁ—yi—alogni%—aﬂ
7

Since,

clogm; = olog (e(‘/"ﬂ‘f)/") clog <Ze Vit / ) Vi + u; — olog (Ee(‘/j+uj)/v>
j

]

we can further simply the expectation to obtain

EV = an lalog <Ze Vitw)/ ) + oy

]

= colog <Ze Vith)/ ) +oy  (11)

]

Finally, if we additionally impose p; = u for all j we get the more standard expression

EV = clog <Ze Vi+p)/ ) + oy =clog <€M/JZEV/‘7> t oy

] ]

=clog <Zevf/‘7> +u+oy

j
A Derivatives

A.1 Multinomial choice model

In numerical applications, we often need the first (and possibly second) derivative of
EV (x) w.r.t. some element of x. We derive these expressions in this section, assuming
throughout that the taste shocks are drawn from a Gumbel distribution with potentially
different location parameters. The first-order derivative w.r.t. some xj is given by

(Vitui) /o . .
JEV (x) _ e 19Vi(x) _ ZﬂiaVl(x)
Xk - Zje(‘/j+ﬂj)/f7 o oxg , Xy

1




which is thus just a probability-weighted average of all V; derivatives. Next, the second-
order derivative involves derivatives w.r.t. the probabilities 77;, which we obtain first:

aT[i( ) _ a [ e( (%) +ui) /o ]

o ¥ eVt m)/o
R (V+u)/0 Wi(x) 1 elitm/o [e(Vj(x)Hlj)/Uan(x)]
az Vi +r) /e 9y (Z p +H/)/0>2 j 9%
1 (Vw)/a Vi(x) 1 <V‘+ﬂ')/ﬂ Vit /e gvi(x)
T oy eV ax Uze W G| Ly eV ) [ 9
1 avi(x)
1

_01

axk E ] axk

The second-order derivative of EV (x) is then given by

0’EV(x) a7i(x) aV;(x) 92V;(x)
ox2 _;[ ax x| e

Summing-up restriction. Note that since the probabilities of choosing alternatives
must sum to unity, their derivatives have to sum to zero. We can verify that this
restriction holds for the above expression:

a7t (x 1
Z axk E Zni

1

IVi(x) 9Vj(x)
axk _Zj:nj axk

IV, (x) aV;(x)

P W Wt

Sl =

1

e (o) ()]

A.2 Binary choice model

—_

In the binary case, the above expressions simplify to the following:

o) 1 (Vi) V)] ()
oxy, © oxy oxy dxg

10



Futhermore, for the second-order derivative we find that

axk axk 2 ax%

gs|
2
axk

9°EV(x) a7ty (x) oV (x) 9?Vy(x)
axk axk ax%

lanz(x) Wa(x) ?2Vs(x)

_ lanl(x) Mi(x) | PVi(x)

[_am (x)aVa(x) PVa(x)

axk axk ! axﬁ axk axk 2 axi
_omi(x) [oVi(x) oVa(x) 92V (x) 9%V (x)
= o [ o om0 e TUTTM 5
o o (x) )2 92V (x) Vs (x)
= 1—
7'[1(1 — 7'[1) < Bxk ) +m axi + ( 7t1) ax,%

B Numerical implementation

The expressions derived in the previous sections are not necessarily suited to be used
in numerical implementations as is, since they can yield undefined results (i.e. NaNs).
For example, the probability of choosing alternative i in (10) can result in an expression
of the form “co/00” in numerical applications if V; is large, as the exponential function
quickly approaches values too large to be represented as floating-point numbers. One
alternative way to compute the probabilities in a numerically stable way is to define

m = arg];nax{X/j +;4]}

and then divide both numerator and denominator by e(Vmtin)/o

e(vi_vm"!‘ﬂi_,“m)/a e(vi_vm""]/li_.“m)/g

It = g
! Y eVi—Vmtpj=mm) /o 4 Yo Vi Vatti—pm) /o

This way the numerator is guaranteed to be in [0, 1], and the denominator will be in
[1, n]. Furthermore, as long as V,, is finite, there won’t be any arithmetic operations of
the “oco — c0” sort, while an infinite V,,, means that all choices yield —oo utility, which
should not arise.

Similarly, the expression for EV in (11)

EV =clog (Ze(‘/fﬂ‘f)/”) + oy
j

returns o in standard implementations even for moderately large V;, even though the

11



true value is finite. In fact, it is easy to see that the upper bound is given by

EV = clog (Z ewf“‘f‘””) + oy
j

S 0'10g (Ze(vn1+}4nz)/0> + 0—,)/

)
=clog (n - e(‘/’”ﬂ"”)/") + oy

=clogn+ Vi + pm + 0y
This suggests the following alternative expression:

EV = olog <e<Vm+”'”)/"Ze<VfVm“‘f”m”") +oy
j

= Vm + ﬂm + (TIOg (Ze(‘/j_vﬂ’+yj_ﬂnl)/¢7> + 0.,.)/
j

= Vin + pm + clog (1 +3) e(‘/i_an+Hi_Vm)/‘7> + oy
jm

In particular, for the binary model this reduces to
EV = Vm + ‘um + Ulog (1 _|_ e(V—nz*‘/;n+}47n1*ﬂnz)/0') + 0—,-),

Additionally, since all the terms in the sum
7 = Z e(Vj*Vm‘Fﬂ]‘*,Mm)/U’
j#m

are small by construction, one can use the loglp function to evaluate log(1 + z) numeri-
cally.

12
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