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1 Introduction

The Dixit/Stiglitz monopolistic competition model has been widely adopted in various fields
of economic research such as international trade. The Dixit and Stiglitz (1977) paper actually
contains three distinct models, yet economic literature has mostly taken up only the first one
(constant elasticity case) and its market equilibrium solution. The main results of this subset
of Dixit and Stiglitz (1977) are derived and explained below in order to aid in understanding
this widespread model.

2 Constant elasticity sub-utility function

2.1 Preferences and demand

Assumption 2.1. Preferences are given by a (weakly-)separable, convex utility function

u = U(x0, V (x1, x2, . . . , xn))

where U(·) is either a social indifference curve or the multiple of a representative consumer’s
utility. x0 is a numeraire good produced in one sector while x1, x2, . . . , xn are differentiated
goods produced in another sector.1

1With weakly-separable utility functions, the MRS (and thus the elasticity of substitution) of two goods
from the same group is independent of the quantities of goods in other sub-groups (see Gravelle and Rees
2004, 67).
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Dixit and Stiglitz (1977) treat three different cases in which they alternately impose two of
the three following restrictions:

1. symmetry of V (·) w.r.t. to its arguments;

2. CES specification for V (·)

3. Cobb-Douglas form for U(·)

However, throughout the literature many authors have imposed all three restrictions together
in what Neary (2004) calls “Dixit-Stiglitz lite”.

The next section examines the more general case in which only restrictions 1 and 2 are
imposed. Subsection 2.1.2 briefly looks and the more special case of “Dixit-Stiglitz lite”.

2.1.1 General case

First-stage optimization.

Assumption 2.2. In the CES case the utility function is given as

u = U

x0,[∑
i

xρi

]1/ρ
with ρ ∈ (0, 1) to allow for zero quantities and ensure concavity of U(·). ρ is called the
substitution or “love-of-variety” parameter.2 Furthermore, U(·) is assumed to be homothetic
in its arguments.

Since U(·) is a separable utility function, the consumer optimization problem can be solved
in two separate steps: first the optimal allocation of income for each subgroup is determined,
then the quantities within each subgroup.

Definition 2.1. Let y be a quantity index presenting all goods x1, x2, . . . , xn from the
second sector such that

y ≡

[∑
i

xρi

]1/ρ
. (1)

Figure 1 shows some illustrative examples for the two-dimensional case. As required, the
utility function is concave and x1, x2 are neither complements nor perfect substitutes if
ρ ∈ (0, 1).

The first-stage optimization problem is given as follows:

max . U(x0, y)

s.t. x0 + q · y = I

where I is the income in terms of the numeraire and q is the price index of y.3

2With ρ = 1, x1, . . . , xn are perfect substitutes as the subutility function simplifies to V (x1, x2, . . . , xn) =∑
i xi and thus it does not matter which xi is consumed. For ρ < 0 they are complements (see Brakman

et al. 2001, 68).
3The income consists of an initial endowment which is normalized at 1, plus firm profits distributed to

consumers or minus a lump sum required to cover firm losses. However, since the discussion here is
limited to the market equilibrium case, firms make zero profit so I = 1.
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Figure 1: CES functions with two-dimensional domain and varying ρ parameter (from left to right: ρ =
{-10, 0.5, 0.99}). The first case is excluded in this model due to the restrictions on parameter ρ.

From the Lagrangian L = U(x0, y)− λ[x0 − qy − I] we obtain the first-order conditions

∂L
∂x0

= U0 − λ = 0 (2)

∂L
∂y

= Uy − λq = 0 (3)

∂L
∂λ

= x0 + qy − I = 0

From (2) and (3) we get the necessary condition

Uy
U0

= q =
py
p0

(4)

which is the familiar Ui/Uj = pi/pj as q is the price index for y and p0 = 1 due to the
numeraire definition. Since U(·) was assumed homothetic, this uniquely identifies the share
of expenditure for x0 and y because these solely depend on relative marginal utilities. Denote
the share of expenditure on y as s(q) and that on x0 as (1−s(q)). Then the optimal quantities
for each sector are

x0 = (1− s(q))I

y =
s(q)I

q
(5)

Second-stage optimization. Given the definition of y and s(q), the second-state problem
is

max . y =

[∑
i

xρi

]1/ρ
s.t.

∑
i

pixi = s(q)I
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The Lagrangian L = (
∑
i x

ρ
i )

1/ρ − λ(
∑
i pixi − s(q)I) yields the first-order conditions

∂L
∂xi

= y1−ρxρ−1
i − λpi = 0 (6)

∂L
∂λ

=
∑
i

pixi − s(q)I = 0 (7)

Solving (6) for xi gives
xi = y(λpi)

1/(ρ−1) (8)

Inserting this into (7) and solving for λ we get∑
i

piy(λpi)
1/(ρ−1) = s(q)I

λ1/(ρ−1)y
∑
i

p
ρ/(ρ−1)
i = s(q)I

λ1/(ρ−1) =
s(q)I)

y

[∑
i

p
ρ/(ρ−1)
i

]−1

(9)

Finally, plugging (9) back into (8) we get the preliminary demand function facing a single
firm in the second sector:4

xi = s(q)Ip
1/(ρ−1)
i

∑
j

p
ρ/(ρ−1)
j

−1

(10)

To further simplify this expression, take (10) to the power of ρ and sum over i:5

xρi = (s(q)I)ρp
ρ/(ρ−1)
i

∑
j

p
ρ/(ρ−1)
j

−ρ

∑
i

xρi =

∑
j

p
ρ/(ρ−1)
j

−ρ

(s(q)I)ρ
∑
i

p
ρ/(ρ−1)
i

y =

[∑
i

xρi

]1/ρ
=

∑
j

p
ρ/(ρ−1)
j

−1

s(q)I

[∑
i

p
ρ/(ρ−1)
i

]1/ρ

y =
s(q)I[∑

i p
ρ/(ρ−1)
i

](ρ−1)/ρ
(11)

From (5) and (11) we obtain

Result 2.1. For the utility function given in Assumption 2.2 and the composite quantity
index from Definition 2.1 the corresponding price index is

q =

[∑
i

p
ρ/(ρ−1)
i

](ρ−1)/ρ

(12)

4The summation index has been changed to j to reflect that it in is unrelated to i.
5The last step follows from the fact that both sums are identical, regardless whether the index i or j is

used.
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Using Result 2.1, (10) can be simplified to arrive at

Result 2.2. For the utility function given in Assumption 2.2, the resulting demand function
facing a single firm is

xi = y

[
q

pi

]1/(1−ρ)
(13)

with y and q defined in (1) and (12), respectively.

Some remarks regarding the demand function and CES preferences are in order.

First, by plugging y = s(q)I/q into (13) and taking logs, it can easily be seen that the
varieties x1, x2, . . . , xn have unit income elasticities ∂ log xi/∂ log I.

Second, assuming a sufficiently large number of varieties so that pricing decisions of a single
firm do not affect the general price index, the price elasticity of demand for xi is

εd =
∂ log xi
∂ log pi

∣∣∣∣
q const.

=
1

ρ− 1
(14)

At this point it is convenient to define σ ≡ 1/(1− ρ) so that εd = −σ.6

Third, to get the elasticity of substitution between two varieties, from (6) we see that

xi
xj

=

[
pj
pi

]1/(1−ρ)
and hence the elasticity of substitution can be obtained as

εs =
∂ log(xj/xi)

∂ log(pi/pj)
=
∂ log(pi/pj)

1/(1−ρ)

∂ log(pi/pj)
=

1

1− ρ
= σ (15)

This can be summarized as

Result 2.3. Dixit-Stiglitz preferences given in Assumption 2.2 result in constant demand
and substitution elasticities given by

εd =
1

ρ− 1
= −σ εs =

1

1− ρ
= σ

Often the model is specified directly in terms of σ instead of ρ,7 with

u = U(x0, y) , y ≡

[∑
i

x
1−1/σ
i

]1/(1−1/σ)

, q ≡

[∑
i

p1−σi

]1/(1−σ)

Fourth, to see why the CES utility specification is called “variety-loving”, inspect the large-
subgroup case with many varieties n with similar price levels, i.e. pi ≈ p and hence xi = x.
Then expenditure is equally divided over all varieties x1, x2, . . . , xn since they symmetrically

6Here σ is different from σ(q) in Dixit and Stiglitz (1977), but reflects the notation of many other Dixit-
Stiglitz-based models.

7For example, see Baldwin et al. (2005, 38).
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enter into the subutility function. If there exist n varieties, the expressions for y and q
simplify to

y =

[
n∑
i

xρ

]1/ρ
= xn1/ρ (16)

q =

[
n∑
i

pρ/(ρ−1)

](ρ−1)/ρ

= pn(ρ−1)/ρ (17)

Plugging (5) and (17) into (13) gives a simplified demand function for the large-subgroup
case:

x =
s(q)I

np
. (18)

Substituting this for x in the subutility function (1), we obtain

V (n) = y =

[
n∑
i

[
s(q)I

np

]ρ]1/ρ
= n(1/ρ)

s(q)I

np

= n1/ρ−1(nx)

which is increasing in n as ρ ∈ (0, 1) by assumption. The last equality provides some intuitive
insights: since (nx) is the actual quantity produced, the term n1/ρ−1 > 1 can be seen as
an additional “bonus”, so variety represents an externality or the extent of the market.
Increasing the market size nx has a more than proportional effect on utility due to this term
(Brakman et al. 2001, 68).

That utility increases with variety can also be seen by recalling that V (x) = y = s(q)I/q
and examining how q from (17) changes with n, as shown in Figure 2.

Figure 2: Price index q as a function of the number of varieties n (assuming p = 1)
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It is evident that for constant expenditure, the price index falls rapidly, with utility rising
as a consequence. This effect is more pronounced for ρ closer to 0, which can intuitively
be explained using Figure 1: for ρ close to 1, all varieties are close substitutes and hence
introducing another similar variety only moderately increases utility. The converse is true
for ρ close to 0.
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2.1.2 Cobb-Douglas case (“Dixit-Stiglitz lite”)

In this section we inspect a special case of the model in which all three of the initially
mentioned restrictions on utility are imposed.

Assumption 2.3. If U(·) is Cobb-Douglas and V (·) is CES, the resulting utility function
is given by

u = U(x0, y) = x1−α0 yα.

Again a two-state optimization approach is applicable.

First-stage optimization. The maximization problem is stated as follows:

max . u = x1−α0 yα (19)

s.t. x0 + qy = I

As in (4), the necessary condition from the Lagrangian is Uy/U0 = q, which together with
the budget constraint yields the well-known result for Cobb-Douglas utility:

x0 = (1− α)I (20)

y =
αI

q
(21)

Second-stage optimization. From here the second-stage optimization proceeds exactly as
in the general case, with α replacing s(q). Using the definition of q one arrives at the demand
function given in Result 2.2.

With the Cobb-Douglas / CES case it can easily be verified that a single-stage optimization
process yields the same results. The Lagrangian in this case is

L = x1−α0

[∑
i

xρi

]α/ρ
− λ

[
x0 +

∑
i

pixi − I

]

with the relevant first-order condition being

∂L
∂xi

= x
(1−α)
0

α

ρ

[∑
i

xρi

](α−ρ)/ρ
ρxρ−1

i − λpi = 0

Dividing the first-order conditions for xi and xj , multiplying by pi and summing over i the
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demand function can be obtained:

xi
xj

=

[
pi
pj

]1/(ρ−1)

pixi = p
ρ/(ρ−1)
i p

1/(1−ρ)
j xj

I − x0 =
∑
i

xipi = p
1/(1−ρ)
j xj

∑
i

p
ρ/(ρ−1)
i

xj =
(I − x0)p

1/(ρ−1)
j∑

i p
ρ/(ρ−1)
i

=
I − x0
q

q1/(1−ρ)

p
1/(1−ρ)
j

[by def. of q]

= y

[
q

pj

]1/(1−ρ)

2.2 Firms and production

It is assumed that all firms producing varieties of xi have identical fixed and marginal
costs. Since consumers demand all existing varieties symmetrically, any new firm entering
the market will choose to produce a unique variety and exploit monopolistic pricing power
instead of entering into a duopoly with an existing producer. Also, every firm will choose
to produce one variety only (see Baldwin et al. (2005, 42) on how to derive this result).

Production for each firm exhibits (internal) increasing returns to scale. This is implied by
introducing fixed costs in addition to (constant) marginal costs as stated above. Hence the
cost function has the form

C(x) = cx+ F (22)

where c is the marginal costs and F the fixed cost per variety (there are no economies of
scope).8

2.3 Market equilibrium

Equilibrium in this model is determined by two conditions: first, firms maximize profits
consistent with the demand function (13); second, as this creates pure profit which induces
new firms to enter the market, quantities of xi adjust until the marginal firm just breaks
even (free entry condition).

Profit maximization. Since each firm produces a unique variety, monopolistic pricing ap-
plies and each firm faces the maximization problem

max . π = p(x)x− cx− F (23)

It is assumed that each firm takes price setting behavior of other firms as given (other firms
do not adapt their prices as a reaction to the firm’s price) and that firms ignore effects of
their pricing decisions on the price index q. Again, this assumption is only plausible with a
sufficiently large number of firms.

8As all firms have identical cost functions, face identical demand functions and all varieties enter symmet-
rically into the utility function, subscripts i will be omitted from now on, i.e. xi = x, pi = p.
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The necessary first-order condition resulting from (23) is the well-known

p

[
1 +

1

εd

]
= c

p

[
1− 1

σ

]
= c

where εd is the elasticity of demand, which was shown to equal −σ = 1/(ρ−1) in Result 2.3.
Solving for p, we obtain

Result 2.4. In equilibrium, the optimal price is given by

pe =
c

ρ
,

where pe is calculated as a constant mark-up over marginal cost c.

Free entry condition. As the model assumes free entry, new firms will enter the market and
produce a new variety as long as this yields positive profit. When a firm enters the market
and starts producing a new variety, consumers divert some of the expenditure previously
spent on existing varieties to purchase the new good. The quantity of each variety sold
decreases, as does profit due to rising average costs. As a consequence, the free entry
condition states that in equilibrium the marginal firm (indexed by n) just breaks even, i.e.
operating profit equals fixed cost:9

(pn − c)xn = F (24)

With symmetry and identical firms, condition (24) holds for all intramarginal firms as well.
Solving (24) for x, we get

Result 2.5. The free entry condition dictates that in equilibrium the quantity of each
variety produced is

xe =
F

pe − c
=
F

c
(σ − 1) . (25)

Naturally, in equilibrium the number of varieties produced has to be consistent with the
demand function from (18), and therefore

s(pen
(ρ−1)/ρ
e )

pene
=

F

(pe − c)
(26)

must hold. This uniquely identifies an equilibrium if the left-hand side is a monotonic
function of n, which is the case if the elasticity w.r.t. n has a determinate sign. It is assumed
to be negative as the quantity of each variety consumed decreases when more varieties are
available. See Dixit and Stiglitz (1977, 300) for a formal condition for this to hold.

Before finishing this section, some further remarks regarding the equilibrium are necessary.
First, from (25) it can be seen that equilibrium quantities are constant and depend on the
two cost parameters, F and c, and on one demand parameter, σ, all of which are exogenously
determined. They are independent of other factors such as the number of varieties produced.
Therefore, aggregate manufacturing output can only increase by increasing the number of

9Ignoring integer constraints, the number of firms n is assumed to be large enough that this can be stated
as an equality.
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varieties. This determines the outcome of models such as Krugman (1980), where increasing
the market size via trade liberalization results in more varieties, not higher quantities per
firm.10

Second, calculating equilibrium operating profit (ignoring fixed costs) as

πe = (pe − peρ)xe

πe = (1− ρ)pexe

πe =
pexe
σ

we see that operating profits are determined as a constant profit margin 1/σ of revenue
pexe.

10However, this result depends on several assumptions, viz. ice-berg trade costs, homothetic cost functions
and mill pricing, i.e. invariant mark-ups (see Baldwin et al. 2005, 42).
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